SKRIPSI

EVALUASI STRUKTUR GEDUNG HOTEL PARAI KOTA SAWAHLUNTO DENGAN MENGGUNAKAN ANALYSIS NON-LINIER

Diajukan Sebagai Salah Satu Syarat Untuk Memperoleh Gelar Sarjana Teknik Sipil

Oleh <u>FIRDAUS VIRGO</u> 21180048

PROGRAM STUDI TEKNIK SIPIL FAKULTAS TEKNIK UNIVERSITAS MUHAMMADIYAH SUMATERA BARAT 2024

HALAMAN PENGESAHAN

EVALUASI STRUKTUR GEDUNG HOTEL PARAI KOTA SAWAHLUNTO DENGAN MENGGUNAKAN ANALYSIS NON-LINIER

> Oleh FIRDAUS VIRGO 21180048

Dosen Pembimbing I,

C

<u>Dr. Eng., Ir., Masril, S.T., M.T</u> NIDN.1005057407

Dosen Pembimbing II,

Asiya Nurhasanah H, S.ST., M.Eng NIDN. 1022119101

Dekan Fakultas Teknik UM Sumatera Barat,

Dr. Eng., Ir., Masril, S.T., M.T. NIDN.1005057407

Ketua Program Studi Teknik Sipil,

Helga Yermadona, S.Pd., M.T

leiga Yermadona, S.Pd., M. NIDN.1013098502

LEMBAR PERSETUJUAN TIM PENGUJI

Skripsi ini telah dipertahankan dan disempurnakan berdasarkan masukan dan koreksi tim penguji pada ujian tertutup tanggal 27 Agustus 2024 di Fakultas Teknik Universitas Muhammadiyah Sumatera Barat.

Bukittinggi, 27 Agustus 2024

Mahasiswa,

Firdaus Virgo 21180048

Disetujui Tim Penguji Skripsi tanggal 27 Agustus 2024:

1. Asiya Nurhasanah Habirun, S.ST., M.Eng.

1

2. Dr. Eng., Ir., Masril, S.T., M.T.

3. Ir. Zuheldi, S.T., M.T.

4. Ir. Deddy Kurniawan, S.T., M.T.

Mengetahui, Ketua Program Studi Teknik Sipil

Heiga Yermadona, S.Pd., M.T NIDN. 1013098502

LEMBAR PERNYATAAN KEASLIAN

Saya yang bertanda tangan dibawah ini :

Nama	: Firdaus Virgo
Tempat dan tanggal lahir	: Bukittinggi, 4 September 1997
NIM	: 21180048
Judul Skripsi	: Evaluasi struktur gedung hotel parai Kota
	Sawahlunto dengan menggunakan analysis non-
	linier.

Menyatakan dengan sebenarnya bahwa penulisan Skripsi ini berdasarkan hasil penelitian, pemikiran dan pemaparan asli dari saya sendiri, baik untuk naskah laporan maupun kegiatan yang tercantum sebagai bagian dari Skripsi ini. Jika terdapat karya orang lain, saya akan mencantumkan sumber yang jelas.

Demikian pernyataan ini saya buat dengan sesungguhnya dan apabil dikemudian hari terdapat penyimpangan dan ketidakbenaran dalam pernyataan ini, maka saya bersedia menerima sanksi akademik berupa pencabutan gelar yang telah diperoleh karena karya tulis ini dan sanksi lain sesuai dengan peraturan yang berlaku di UM Sumatera Barat.

Demikian pernyataan ini saya buat dalam keadaan sadar tanpa paksaan dari pihak manapun.

Bukittinggi, 22 Agustus 2024

the state of the

21180048

ABSTRAK

Resiko gempa yang tinggi diindonesia menyebebkan sering terjadi kerusakan pada struktur bangunan. maka perlu direncanakan dan diperhitungkan beban gempa terhadap struktur bangunan tersebut. Bangunan yang jadi bahan penelitian ini adalah hotel Parai Kota Sawahlunto yang telah berdiri 13 tahun yang lalu dan sampai saat ini bangunan tersebut masih berdiri. dimana selama ini analisa gempa menggunakan Force Based Design atau berbasis kinerja, Force Based Design perhitungan gaya gempa dilakukan dengan analisa linier (elastis). analisa statis nonlinier (Pushover) dalam pengecekan perilaku struktur yang dianalisa dengan cara memberikan beban statis yang ditingkatkan secara bertahap hingga mencapai titik kerusakan pada struktur. analisa statis nonlinier (*Pushover*) merupakan salah satu komponen Performance Based Design yang menjadi sarana dalam mencari kapasitas suatu struktur, dasar dari analisis Pushover. yaitu memberikan beban statis tertentu arah lateral yang ditingkatkan secara bertahap pada suatu struktur sehingga mencapai target kerusakan. analisis Pushover juga dapat memperlihatkan secara visual perilaku struktur pada saat kondisi elastis, plastis, dan sampai terjadinya keruntuhan pada elemen struktur. Hasil dari penellitian struktur gedung ini adalah secara teknis gedung ini tidak aman untuk digunakan setelah pengecekan perilaku struktur karena telah mencapai titik dimana elemen struktur telah rusak. status kerusakan gedung pada beban dorong ke 10 sudah hampir mengalami keruntuhan yaitu pada titik C merupakan kapasitas ultimit dari elemen struktur gedung tersebut, sedangkan batas aman bangunan yang diizinkan dalam status *Life Safety*, yaitu pada gedung telah mengalami kerusakan akan tetapi masih aman untuk digunakan. penentuan taraf kinerja struktur mengikuti dokumen ATC - 40. Analisa Pushover simpangan total maksimum arah x 0,027 mm dengan gaya geser dasar (base shear) yang telah diberikan sebesar -555.151 kN, dan arah y 0,027 mm dengan gaya geser dasar sebesar -555.151 kN, pada simpangan inelastic maksimum arah x 0,026 mm diberikan sebesar -555.151 dan arah y 0.026 mm dengan gaya geser dasar sebesar -555.151.

Kata Kunci: analysis pushover, evaluasi struktur gedung.

ABSTRACT

The high risk of earthquakes in Indonesia causes frequent damage to building structures. Therefore, it is necessary to plan and calculate the earthquake load on the building structure. The building that is the subject of this research is the Parai Hotel in Sawahlunto City which was built 13 years ago and until now the building is still standing, where so far earthquake analysis uses Force Based Design or performance-based, Force Based Design earthquake force calculations are carried out with linear (elastic) analysis. nonlinear static analysis (Pushover) in checking the behavior of the structure which is analyzed by providing a static load that is gradually increased until it reaches the point of damage to the structure. nonlinear static analysis (Pushover) is one of the components of Performance Based Design which is a means of finding the capacity of a structure, the basis of Pushover analysis. namely providing a certain static load in the lateral direction which is gradually increased on a structure so that it reaches the target damage. Pushover analysis can also visually show the behavior of the structure during elastic, plastic conditions, and until the collapse of the structural elements. The results of this building structure research are that technically this building is not safe to use after checking the structural behavior because it has reached a point where the structural elements have been damaged, the status of building damage at the 10th push load has almost collapsed, namely at point C which is the ultimate capacity of the building's structural elements. while the safe limit of the building permitted in the Life Safety status, namely the building has been damaged but is still safe to use. determination of the level of structural performance follows the ATC - 40 document. Pushover analysis of the maximum total deviation in the x direction of 0.027 mm with a base shear force that has been given of -555.151 kN, and the y direction of 0.027 mm with a base shear force of -555.151 kN, at the maximum inelastic deviation in the x direction of 0.026 mm is given at -555.151 and the v direction of 0.026 mm with a base shear force of -555.151.

Keywords: pushover analysis, building structure evaluation.

KATA PENGANTAR

Puji syukur kepada Allah SWT atas segala berkat yang telah diberikan-Nya, sehingga skripsi ini dapat diselesaikan. Skripsi ini merupakan salah satu kewajiban yang harus diselesaikan untuk memenuhi sebagian persyaratan akademik untuk memperoleh gelar Sarjana Teknik Sipil di Universitas Muhammadiyah Sumatera Barat (UMSB).

Penulis menyadari bahwa tanpa bimbingan, bantuan, dan doa dari berbagai pihak, skripsi ini tidak akan dapat diselesaikan tepat pada waktunya. Oleh karena itu, penulis mengucapkan terima kasih yang sebesar – besarnya kepada semua pihak yang telah membantu dalam proses pengerjaan skripsi ini, yaitu kepada :

1. Mama, kakak, dan serta seluruh keluarga yang telah memberikan dukungan moril, doa, dan kasih sayang;

2. Bapak Masril, S.T., M.T selaku Dekan Fakultas Teknik UM Sumatera Barat;

3. Ibu Helga Yermadona, S.Pd., M.T selaku Ketua Prodi Teknik Sipil UM Sumatera Barat;

4. Bapak Ir. Surya Eka Priana, M.T selaku Dosen Pembimbing Akademik;

5. Bapak Masril, S.T., M.T_selaku Dosen Pembimbing I skripsi yang telah memberikan bimbingan dan banyak memberikan masukan kepada penulis.

6. Ibu Asiya Nurhasanah Habirun, S.ST,M.Eng selaku Dosen Pembimbing II skripsi yang juga telah memberikan bimbingan dan banyak memberikan masukan kepada penulis;

7. Bapak/Ibu Tenaga Kependidikan Fakultas Teknik UM Sumatera Barat;

8. Semua pihak yang namanya tidak dapat disebutkan satu per satu.

Akhir kata, penulis menyadari bahwa mungkin masih terdapat banyak kekurangan dalam skripsi ini. oleh karena itu, saran dari pembaca akan sangat bermanfaat bagi penulis. Semoga skripsi ini dapat bermanfaat bagi semua pihak yang membacanya, khususnya mahasiswa teknik sipil.

Bukittinggi, 22 Agustus 2024

Penulis

DAFTAR ISI

HA	LAM	IAN JU	DUL	
HA	LAM	IAN PE	NGESAHAN	
HA	LAM	IAN PE	RNYATAAN KEASLIAN SKRIPSI	
AB	STRA	\K		i
KA	TA P	ENGA	NTARii	I
DA	FTAI	R ISI	i	v
DA	FTAI	R TABI	ELv	ii
DA	FTAI	R GAM	BARvi	ii
DA	FTAI	R NOT.	ASIxi	ii
I.	PEN	DAHU	LUAN	1
	1.1	Latar]	Belakang,	1
	1.2	Rumu	san Masalah	2
	1.3	Batasa	n Masalah	2
	1.4	Manfa	at dan T <mark>uju</mark> an Penelitian	3
	1.5	Sistem	atika Penulisan	3
II.	TIN.	JAUAN	PUSTAKA	4
	2.1	Tinjau	an Umum ALERA BAN	4
		2.1.1	Bearing Wall	6
		2.1.2	Frame Wall	6
		2.1.3	Core Wall	6
		2.1.4	Elemen Struktur Dinding Geser	6
	2.2	Sistem	Penahan Gaya Lateral	8
		2.2.1	Sistem Penahan Gaya Lateral	9
		2.2.2	Langkah-langkah SAP1	0
		2.2.3	SAP (Structural Analysis Program)5	0
III.	ME	ΓODOI	OGI PENELITIAN	1
	3.1	Lokas	Penelitian5	1
	3.2	Data P	enelitian5	1
		3.2.1	Data Umum Proyek	1

		3.2.2 Data Teknis Proyek	52
	3.3	Bagan Alir Penelitian	54
IV.	ANA	ALISA DAN PEMBAHASAN	55
	4.1	Preliminary Desain	55
	4.2	Menggambar Model Struktur	55
	4.3	Merencanakan Material Struktur	56
	4.4	Membuat Penampang Struktur	57
		4.4.1 Balok	58
		4.4.2 Kolom	58
		4.4.3 Pelat Lantai	59
	4.5	Menggambar Model Elemen Struktur	60
		4.5.1 Menggambar Elemen Balok	60
		4.5.2 Menggambar Elemen Kolom	61
		4.5.3 Menggambar Elemen Pelat	62
	4.6	Menetapkan Jenis Perletakan/Restrain	63
	4.7	Meshing Pada Pelat Lantai dan Atap	63
	4.8	Mengaplikasikan Pembebanan	64
		4.8.1 Mendefenisikan Jenis Beban	64
		4.8.2 Beban Mati Pada Pelat Lantai	64
		4.8.3 Beban Mati Pada Pelat Atap	65
		4.8.4 Beban Mati Pada Balok	65
		4.8.5 Beban Hidup	66
	4.9	Mengaplikasikan Beban Gempa	66
		4.9.1 Gempa Dinamik Respon Spektrum	68
		4.9.2 Penentuan Masa Struktur	69
	4.10	Menetapkan Lantai Tingkat Sebagai Diafragma	70
	4.11	Kombinasi Beban Gempa	70
	4.12	Pengecekan Perilaku Struktur	72
		4.12.1 Pemeriksaan Jumlah Ragam	72
		4.12.2 Perbandingan Geser dasar Vstatik VS Vdinamik	72
		4.12.3 Pemeriksaan Simpangan Antar Lantai	73
	4.13	Analisis Static Nonlinier (Pushover Analysis)	73

		4.13.1 Menambahkan Tulangan Terpasang	75
		4.13.2 Menentukan Gravity Nonlinier Case	76
		4.13.3 Menentukan Nonlinier Pushover Case	77
		4.13.4 Memodelkan Sendi Plasti pada Balok dan Kolom	79
		4.13.5 Running Program	80
		4.13.6 Menampilkan Kurva Kapasitas Pushover	81
		4.13.7 Level Kinerja Struktur	81
	4.14	Rekapitulasi Gaya dalam Balok dan Kolom	86
	4.15	Perhitungan Kolom, Balok, dan Pelat Lantai	86
V.	PEN	UTUP	96
	5.1	Kesimpulan	96
	5.2	Saran	96

DAFTAR PUSTAKA

LAMPIRAN

DAFTAR TABEL

No. Tabel	Halaman
Tabel. 2.1 Hasil penjumlahan geser dasar untuk masing masing gempa.	42
Tabel. 2.2 Simpangan antar tingkat izin	43
Tabel.2.3. Simpangan lantai arah – x (Δx)	46
Tabel.2.4. Simpangan lantai arah – y (Δy)	47
Tabel 4.1. Beban mati pada Gedung hotel	64
Tabel 4.2. Beban mati pada pelat atap	65

DAFTAR GAMBAR

No. Tabel

Halaman

Gambar.2.1. Input data Grid	11
Gambar.2.2. Input data material beton	12
Gambar. 2.3. Input data material tulangan	12
Gambar.2.4. Frame Section Properties Type	13
Gambar.2.5. Input Properties Balok	13
Gambar.2.6. Input data Reinforcement balok	14
Gambar.2.7. Input Frame property/Stiffnes Modification Factors balok	15
Gambar.2.8. Input Properties kolom	16
Gambar.2.9. Input data Reinforcement kolom	16
Gambar.2.10. Input Frame Properties/Stiffnes Modification Factors kolom	17
Gambar.2.11. Shell Section data	18
Gambar.2.12. Input Properties/Stiffnes Modification Factors pelat	19
Gambar.2.12. Penggambaran elemen balok B1	20
Gambar.2.13. Penggambaran elemen balok B2	20
Gambar.2.14. Penggambaran elemen kolom	21
Gambar.2.15. Penggambaran elemen pelat lantai	22
Gambar.2.16. Penggambaran elemen pelat atap	22
Gambar2.17. Mengatur Display Option Window	23
Gambar.2.18. Hasil model elemen struktur	23
Gambar.2.19. Membuat Perletakan Jepit pada Pondasi	24
Gambar.2.20. Devide pelat lantai dan atap	25
Gambar.2.21. Jenis – jenis beban yang bekerja	26
Gambar.2.22. Distribusi beban mati pada pelat lantai	27
Gambar.2.23. Distribusi beban mati pada balok	28
Gambar.2.24. Beban hidup untuk lantai	28
Gambar.2.25. Beban hidup lantai atap	28
Gambar.2.26. Distribusi beban hidup pada lantai gedung (2,4 kN/m ²)	29

Gambar.2.27. Ilusi dari analisis gempa dengan metode static ekuivalen	30
Gambar.2.28. <i>Define</i> beban gempa static ekuivalen	31
Gambar.2.29. Input gempa static ekivalen arah x-x	31
Gambar.2.30. Input gempa static ekuivalen arah y-y	32
Gambar.2.31. Grafik respon spectrum SNI 1726 : 2019	32
Gambar.2.32. Input parameter respon spectrum	33
Gambar.2.33. Define Load Case	33
Gambar.2.34. Respon <i>spectrum case</i> arah – x	34
Gambar.2.35. Respon spectrum case arah – y	34
Gambar.2.36. Penentuan masa gedung	35
Gambar.2.37. Deefine Constraints	36
Gambar.2.38. Input Joint Constraints	36
Gambar.2.39. Input beban kombinasi (comb.3) dan Envelope	39
Gambar.2.40. Jumlah massa Rations	40
Gambar2.41. Seleksi Load Case untuk perhitungan geser dan dasar	41
Gambar.2.42. Koreksi skala faktor gempa dinamik arah x	42
Gambar.2.43. Penentuansimpangan antar lantai (sumber gambar 2.42. SNI	
1726:2019)	43
Gambar.2.44. Set display Options.	44
Gambar.2.45. Joint label pada atap (elevasi 20 m)	45
Gambar.2.46. Pilihan untuk menampilkan defleksi	45
Gambar.2.47. Tabel Joint Displacement	46
Gambar2.48. Simpangan lantai (Story drift)	47
Gambar. 2.49. Penyesuaian faktor reduksi sesuai SNI beton 2847-2019	48
Gambar.2.50. Pendefenisian SRPMK balok dan kolom	49
Gambar.2.51. Pilihan kombinasi desain	49
Gambar 3.1. Lokasi Penelitian	51
Gambar 3.2. Pondasi konstruksi bore pile	52
Gambar 3.3. Dimensi balok	53
Gambar 3.4. Detail pelat lantai	53

Gambar 4.1. Menginput material beton balok.	56
Gambar. 4.2. Menginput material beton kolom.	57
Gambar 4.3. Penampang struktur balok 30/50	58
Gambar 4.4. Penampang struktur kolom 45/45.	58
Gambar. 4.5. Shell Section data.	59
Gambar.4.6. Input Property/Stiffness modification pelat	59
Gambar 4.7. Penggambaran struktur balok	60
Gambar 4.8. Penggambaran struktur kolom	61
Gambar 4.9. Penggambaran struktur pelat	62
Gambar 4.10. Membuat Perletakan jepit pada pondasi	63
Gambar 4.11. Devide Pelat Lantai dan Atap	63
Gambar 4.12. Jenis beban yang bekerja	64
Gambar 4.13. Input beban mati pada balok.	65
Gambar 4.14. Distribusi beban hidup pada Gedung hotel	66
Gambar 4.15. Define Gempa Statik Ekivalen.	66
Gambar 4.16. Penginputan beban gempa arah X	67
Gambar 4.17. Penginputan beban gempa arah Y	67
Gambar 4.18. Input parameter respon spektrum	68
Gambar 4.19. Respon spektrum case arah X.	68
Gambar 4.20. Respon spektrum case arah Y.	69
Gambar 4.21. Penentuan Masa Struktur	69
Gambar 4.22. Input joint Constraint.	70
Gambar 4.23. Input beban kombinasi 3 dan envelope	71
Gmabar.4.24 Jumlah Partisipasi Masa Ratio.	72
Gambar 4.25. Output geser dasar	72
Gambar 4.26. Pemeriksaan simpangan antar lantai	73
Gambar 4.27. Input Tulangan Balok	73
Gambar 4.28. Input Tulangan Balok	74

Gambar 4.29. Input Tulangan Kolom	74
Gambar.2.30. Input Static Nonlinier Case Gravity arah Y	75
Gambar.4.31. Input Static Nonlinier Case Gravity arah X	75
Gambar.4.32. Load Aplicatioon Control for static nonlinier Push – X	76
Gambar.4.33. Static nonlinier Push – Y	76
Gambar.4.34. Load Aplicatioon Control for static nonlinier Push – Y	77
Gambar.4.35. Input Hinge pada balok	77
Gambar.4.36. Input data Hinge ASCE 41 -13	
Gambar.4.37. Input Hinge pada kolom	
Gambar.4.38. Input data Hinge ASCE 41 -13	79
Gambar.4.39. Memilih Load case to run	79
Gambar.4.40. Pushover Curve X	
Gambar.4.41. Display tabel pushover Curve X	
Gambar.4.42. Display tabel pushover Curve Y	
Gambar.4.43. Input parameter kapasitas spectra ATC – 40	
Gambar.4.44. Spektrum kapasitas arah X	
Gambar.4.45. Spektrum kapasitas arah Y	
Gambar.4.46. Push X step 3	
Gambar.4.47. Push X step 8	
Gambar.4.48. Push Y step 9	
Gambar.4.49. Push Y step 10	
Gambar.4.50. Deformed Shape Gravity	85

DAFTAR NOTASI

- А = Merupakan kondisi dimana belum ada pembebanan sehingga belum terjadi plastifikasi pada sendi plastis.
- В = Merupakan kondisi dimana elemen mulai mengalami leleh yang pertama kali.
- С = Merupakan kapasitas ultimit dari elemen.
- Cd = Faktor pembesaran defleksi
- = Elemen pada level kinerja *Collapse Prevention* (kondisi hampir runtuh). CP
- D = Beban mati
- E = Beban gempa
- AS MUH Eh = Penngaruh beban gempa horizontal
- Ev = Pengaruh beban vertical
- = Beban gempa arah x Ex
- = Beban gempa arah y Ey
- Ι = 1 (faktor keutamaan gedung)
- Ι = Faktor keutamaan gempa
- = Merupakan tahapan setelah leleh (plastis) dengan Tingkat knierja pada ΙΟ

elemen Immediately Ocupancy.

- L = Beban hidup
- = Beban hidup pada atap Lr
- LS = Elemen pada level kinerja *Life Safety* (kondisi plastis).
- Р = Faktor redundasi
- QE = Pengaruh gaya gempa horizontal dari V atau Fp
- R = Beban hujan
- SDLLL = Beban hidup
- SDS = parameter percepatan *spectrum respons* desain pada perioda pendek
- Ss = 0.9153 g (percepatan batuan dasar periode 0,2 detik)

- S1 = 0.4008 g (percepatan batuan dasar periode 1 detik)
- *T* = 0,967 detik (periode fundamental)
- TI = 12 detik (periode transisi jangka panjang)
- U = Kuat perlu
- W = Beban angin
- $y\rho$ = faktor redundansi
- Ω = 3 (faktor faktor kuat lebih)
- $\Delta_{\mathbf{X}}$ = simpangan antar lantai
- $\Delta a = simpangan Ijin$
- δ = defleksi yang terjadi

BAB I

PENDAHULUAN

1.1 Latar Belakang

Resiko gempa yang tinggi di negara Indonesia menyebabkan sering terjadi kerusakan pada struktur bangunan. maka perlu direncanakan dan diperhitungkan beban gempa terhadap struktur bangunan tersebut. bangunan yang jadi bahan untuk penelitian ini adalah bangunan hotel parai kota sawahlunto yang telah berdiri selama 13 tahun yang lalu, dan sampai saat ini bangunan tersebut masih berdiri dengan sangat kokoh, pada kemungkinan besar lainnya ada kerusakan pada struktur bangunan tersebut setelah sekian lama bangunan tersebut berdiri, bangunan tersebut berdiri di lereng bukit dan didekat sungai. untuk memprediksi gempa sangatlah sulit, maka dari itu harus melakukan perencanaan dan perhitungan struktur yang sangat baik terhadap bangunan tahan gempa. metode perencanaan yang sangat sering digunakan untuk bangunan tahan gempa dengan menggunakan gaya sebagai pendekatan suatu struktur adalah perencanaan berbasis gaya (force based design). akan tetapi perencanaan dengan konsep ini belum dapat mengevaluasi kinerja struktur dengan baik. untuk itu di lakukan perancangan kinerja struktur dengan menerapkan perencanaan berbasis kinerja (performance based design).

Perencanaan berbasis *Performance Based Design* merupakan suatu komponen untuk menentukan kapasitas suatu struktur. *Performance Based Design* memberikan 2 elemen yaitu *demand* dan *capacity*. *Demand* adalah suatu representasi dari gerakan tanah akibat gempa bumi. *Capacity* adalah suatu representasi kemampuan dari struktur untuk menahan *Earthquake Demand*. tingkat kerusakan dapat dilihat dari kinerja struktur pada saat atapnya diberikan beban lateral. kolom yang merupakan elemen struktur vertikal yang mendistribusikan beban beban menuju elevasi paling bawah sangat penting diperhatikan pada saat diberikan beban.

Evaluasi terhadap analisa perilaku kolom pendek dapat ditinjau dari kemampuan kolom pendek tersebut dalam menerima beban lateral dan memiliki perbedaan pada kolom tepi dan tengah bentangan portal, hal ini disebabkan oleh tahanan gaya dorong pada saat pendistribusian beban gempa yang mengakibatkan struktur kolom tengah lebih besar memikul gaya dibandingkan dengan kolom tepi. evaluasi struktur gedung hotel parai kota sawahlunto dengan menggunakan *Analysis Nonlinier*.

Gaya lateral disebarkan melalui lantai yang bertindak sebagai balok horizontal ke bidang-bidang bangunan vertikal yang diperlakukan. gaya lateral merupakan suatu beban yang memiliki arah horizontal, besar beban lateral harus didukung oleh pondasi bergantung pada rangka bangunan yang meneruskan beban ke kolom yang paling bawah. beban horizontal terdapat gaya lateral dan momen yang bekerja pada pondasi yang diakibatkan oleh gaya gempa, gaya angin pada struktur atas. kepala tiang dapat dibedakan menjadi kondisi kepala tiang bebas (*Free Head*), dan kondisi kepala tiang terjepit (Fixed Head).

1.2 Rumusan Masalah

 Rumusan masalah pada skripsi ini adalah mengevaluasi kinerja struktur gedung hotel parai kota sawahlunto yang telah didirikan selama 13 tahun yang lalu. evaluasi kinerja struktur dipertimbangkan pada beban kerja serta peraturan yang berlaku saat ini.

1.3 Batasan Masalah

 Kinerja struktur gedung hotel parai kota sawahlunto dengan salah satu metode *non-linier* yaitu *pushover Analysis*. proses *Analysis non-linier* dibantu dengan perangkat lunak SAP2000 Versi 14.

1.4 Manfaat dan Tujuan Penelitian

1. Mengetahui kinerja-kinerja struktur gedung hotel parai kota sawahlunto yang telah berdiri selama 13 tahun terhadap peraturan pembebanan terkini.

1.5 Sistematika Penulisan

Dalam penulisan skripsi ini, penulisan ini dibagi menjadi 5 bab:

BAB I PENDAHULUAN

Tentang penjelasan mengenai latar belakang, identifikasi masalah, batasan masalah, rumusan masalah, manfaat dan tujuan penelitian, dan sistimatika penulisan.

BAB II TINJAUAN PUSTAKA

Berisi memuat teori teori yang mendasari pembahasan sesuai dengan rumusan masalah yang direncanakan.

BAB III METODOLOGI PENELITIAN 🎞

Bab ini menjelaskan data penelitian, pedoman teknis pengambilan data.

BAB IV HASIL PENELITIAN DAN PEMBAHASAN

Berisi tentang evaluasi kondisi pada bangunan hotel, dan tentang data-data yang didapat dari lapangan.

BAB V PENUTUP

Berisi kesimpulan yang dapat diambil dari evaluasi ini dan saran yang berguna untuk perencanaan selanjutnya.

BAB II

TINJAUAN PUSTAKA

2.1 Tinjauan Umum

Struktur bangunan bertingkat rawan terhadap gaya lateral, terutama akibat gaya yang di timbulkan gempa. gaya lateral adalah gaya pada bangunan yang bersifat horizontal dengan arah yang tidak menentu, seperti angin dan gempa bumi. Indonesia juga termasuk ke dalam wilayah yang memiliki intensitas terjadi gempa yang tinggi. Dalam struktur bangunan bertingkat ada dua jenis struktur yaitu struktur atas bangunan (*Upper Structure*) dan struktur bawah bangunan (*Lower Structure*).

Analisis struktur pada kondisi linier belum menggambarkan struktur yang sebenarnya. Hampir semua jenis struktur berperilaku nonlinier pada saat akan mencapai kondisi pembebanan batas (*Ultimate Loading*). analisis dengan memasukkan pengaruh nonlinear perlu dilakukan untuk mengetahui perilaku struktur secara menyeluruh. analisis nonlinier dapat dibagi menjadi dua jenis yaitu analisis nonlinier material dan nonlinier geometri. nonlinier material terjadi akibat adanya perubahan respon fisik material akibat tegangan yang bekerja, hal ini terlihat pada path-dependent (hubungan E dan 6 tidak linier). Nonlinier geometri atau yang dikenal juga sebagai (*Second Order Effects*) terjadi akibat adanya (*Finite Deformation*) yang diikuti dengan perubahan kekakuan struktur akibat pembebanan.

Tujuan yang diharapkan melalui penelitian ini adalah memperoleh cara untuk menganalisis struktur *frame* 3 dimensi dan untuk mempelajari perilaku struktur *frame* 3 dimensi akibat adanya nonlinieritas geometri. cara analisis yang dilakukan adalah dengan menerapkan teori dan teknik numeris yang sudah ada tentang analisis nonlinier *frame* 3 dimensi dan membuat sebuah program komputer untuk menyelesaikannnya. Teori dan teknik numeris yang digunakan dalam analisis ini memiliki kekhasan sebagai berikut :

- Math kekakuan diturunkan dengan menggunakan prinsip Virtual Displacement, pengaruh nonlinear geometri diperoleh dengan memasukkan komponen regangan nonlinier pada persamaan keseimbangan.
- 2. Updating geometri elemen dilakukan dengan menggunakan teori Nite Rotations.
- 3. Pengaruh *Rigid Body Motion* pada elemen diperoleh dengan mengurangkan matrix kekakuan geometri eksternal dari matrix kekakuan elemen, pada tulisan ini matrix tersebut diturunkan sendiri oleh penulis secara *Closed Farm.*
- 4. Persamaan linier simultan diselesaikan dengan metode eliminasi *Gauss*.
- 5. Iterasi untuk menyelesaiakan persamaan inkrimental nonlinier menggunakan metode *Generalized Displacement Control*.

Berdasar teori dan teknik numeris tersebut di atas, sebuah program komputer telah disusun. *Had* dari beberapa contoh numerik ditampilkan untuk mengevaluasi elemen yang digunakan dan untuk mengetahui keandalan prosedur yang diusulkan. kalibrasi hasil analisis menunjukkan bahwa untuk toleransi kesalahan sebesar jumlah iterasi yang diperlukan untuk mencapai konvergensi pada pada setiap tahap inkrimen kurang dari 20 kali. hal ini menunjukkan bahwa metode analisis yang digunakan secara umum efektif dan mempunyai akurasi yang baik sehingga dapat digunakan untuk aplikasi.

Hasil analisis dari berbagai jenis struktur menunjukkan bahwa elemen yang dipakai dapai digunakan untuk menghitung semua struktur yang diidealisasikan sebagai *Frame*. kurva beban lendutan yang diperoleh menunjukkan perilaku nonlinier geometri struktur *Frame* dan dapat dipergunakan untuk memprediksi beban batas suatu struktur *frame* dan nilai faktor keamanan yang lebih akurat.

2.1.1 Bearing wall

Bearing Wall adalah dinding geser yang juga mendukung sebagian besar beban gravitasi. Dinding penahan beban adalah dinding yang merupakan elemen struktur aktif bangunan gedung, yang menahan berat elemen-elemen struktur di atasnya, dengan cara menyalurkan beratnya kestruktur pondasi di bawahnya. Dinding penahan beban adalah salah satu bentuk konstruksi paling awal.

2.1.2 Frame wall

Frame Wall adalah dinding geser yang menahan beban lateral, dimana beban grafis dari *Frame* beton bertulang. Tembok-tembok ini dibangun antara baris kolom.

2.1.3 Core wall

Core wall adalah dinding geser yang terletak didalam wilayah inti pusat dalam gedung yang biasa diisi tangga atau poros *lift*. Dinding yang terletak di kawasan inti pusat memiliki fungsi ganda dan dianggap menjadi pilihan paling ekonomis.

2.1.4 Elemen Struktur Dinding Geser

Dinding geser merupakan elemen struktural yang berfungsi sebagai penahan gaya-gaya lateral bangunan, dimana gaya-gaya lateral yang bekerja merupakan gaya-gaya horizontal yang bekerja pada diafragma dinding geser. (Zuhri, 2011)

Pada umumnya dinding geser juga dapat dikategorikan dalam beberapa hal berdasarkan geometrinya:

1.Flexural Wall (dinding langsing)

Flexural Wall yaitu dinding geser yang memiliki rasio hw/lw ≥ 2 , dimana desain di kontrol terhadap perilaku lentur.

2. Squat wall (dinding pendek)

Squat Wall yaitu dinding geser yang memiliki rasio hw/lw ≤ 2 , dimana desain dikontrol terhadap perilaku lentur.

3. Couple Shear Wall (dinding berangkai)

Dimana momen guling gaya yang terjadi akibat beban gempa ditahan oleh sepasang dinding geser yang dihubungkan dengan balok-balok penghubung sebagai gaya tarik dan tekan bekerja pada msaing-masing dasar dinding tersebut.

Dalam praktiknya, dinding geser selalu dihubungkan dengan sistem rangka pemikul momen pada gedung. dinding *Structural* yang umum di gunakan pada gedung tinggi adalah dinding geser *Kantilever* dan dinding geser berangkai. Berdasarkan SNI 03-2487-2002, dinding beton bertulang *Kantilever* adalah suatu subsitem struktur gedung yang fungsi utamanya utnutk memikul beban geser akibat pengaruh gempa rencana.

Kerusakan pada dinding ini hanya boleh terjadi akibat momen lentur (bukan akibat gaya geser), melalui pembentukan sendi plastis di dasar dinding. nilai momen leleh pada dasar dinding tersebut dapat mengalami pembesaran akibat faktor kuat lebih bahan. jadi berdasarkan SNI tersebut, dinding geser harus di rencanakan dengan desain kapasitas. dinding geser *Kantilever* termasuk dalam kelompok *Flexural Wall*, dimana rasio antara tinggi dan panjang dinding geser tidak boleh kurang dari 2 dan dimensi panjangnya tidak boleh kurang dari 1.5 m.

Kerja sama antara sistem rangka pemikul momen dan dinding geser merupakan suatu keadaan khusus dengan dua struktur yang berbeda sifatnya tersebut digabungkan. dari gabungan keduanya diperoleh suatu struktur yang lebih kuat dan ekonomis. kerja sama ini dapat dibedakan menjadi beberapa jenis yaitu :

1. Sistem Rangka Gedung

Sistem rangka gedung yaitu sistem struktur yang pada dasarnya memiliki ruang pemikul beban gravitasi secara lengkap. pada sistem ini, beban lateral dipikul dinding geser atau rangka *Bresing*. sistem rangka gedung dengan dinding geser beton bertulang yang bersifat daktail penuh (kemampuan struktur mengalami *Deformasi Inelastis Lateral* yang besar tanpa kehilangan kestabilan) dapat direncanakan dengan menggunakan nilai faktor modifikasi respon, R sebesar 6.0

2. Sistem ganda

Merupakan gabungan dari sistem pemikul beban lateral (beban yang tegak lurus terhadap beban grafitasi) berupa dinding geser atau rangka *bresing* dengan sistem rangka pemikul momen. rangka pemikul momen harus direncanakan secara terpisah mampu memikul sekurang-kurangnya 25% dari seluruh beban lateral yang bekerja. kedua sistem ini harus direncanakan untuk memikul secara bersama–sama seluruh beban lateral gempa, dengan memperhatikan interaksi keduanya. nilai R yang direkomendasikan untuk sistem ganda adalah 8.5.

3. Sistem interaksi dinding geser dengan rangka

Sistem ini merupakan gabungan sistem dinding beton bertulang biasa dengan sistem rangka pemikul momen biasa. nilai R yang direkomendasikan untuk sistem ini adalah 5.5.

2.2 Sistem Penahan Gaya Lateral

"Hal yang penting pada struktur bangunan tinggi adalah stabilitas dan kemampuanya untuk menahan gaya lateral, baik yang disebabkan oleh angin atau gempa bumi. beban angin lebih terkait pada dimensi ketinggian bangunan, sedangkan beban gempa lebih terkait pada masa bangunan" (juwana, 2005).

Kolom pada bangunan tinggi perlu diperkokoh dengan sistem pengaku untuk dapat menahan gaya lateral, agar deformasi yang terjadi akibat gaya horizontal tidak melampau ketentuan yang disyaratkan. pengaku gaya lateral yang lazim digunakan adalah portal penahan momen, dinding geser atau rangka pengaku.

Portal penahan momen terdidri dari komponen subsistem horizontal berupa balok dan vertikal berupa kolom yang dihubungkan secara kaku. kekakuan portal tergantung pada dimensi kolom dan balok, serta proposional terhadap jarak lantai ke lantai dan kolom ke kolom. dinding geser didefenisikan sebagai komponen struktur vertikal yang relatif sangat kaku. dinding geser pada umumnya boleh mempunyai bukaan sekitar 5% agar tidak mengurangi kekakuannya. Fungsi dindning geser berubah menjad dinding penahan beban, jika dinding geser menrima beban tegak lurus. rangka pengaku terdiri dari kolom dan balok yang di tambahkan pengaku diagonal. adanya pengaku diagonal ini akan berpengaruh pada fleksibelitas perpanjangan atau perpendekan lantai dimana pengaku tersebut ditempatkan. rangka pengaku banyak digunakan pada bangunan tinggi yang menggunakan struktur baja. jenis rangka pengaku yang sering digunakan adalah pengaku diagonal tunggal / ganda pengaku "K" *Horizontal Vertical* atau pengaruk *Eksentris*.

2.2.1 Sistem Penahan Gaya Lateral

Peninjauan dan perhitungan beban pada perencanaan gedung berdasarkan persyaratan beton structural untuk bangunan gedung SNI 2847-2013 pasal 9.2.1 dan tata cara perencanaan ketahanan gempa untuk struktur. bangunan gedung dan *non* gedung SNI 1726-2012 pasal 4.2.2 dan pasal 4.7

a. 1.4 D
b. 1,2 D + 1,6 L + 0,5 (Lr atau R)
c. 1,2 D + 1,2 (Lr atau R) + (1,0 L atau 0,5 W)
d. 1,2 D + 1,0 W + 1,0 L (Lr atau R)
e. 1,2 D + 1,0 E + 1,0 L
f. 0,9 D + 1,0 W
g. 0,9 D + 1,0 E

Dengan pengaruh beban gempa, E ditentukan oleh persamaan (2-01) dan (2-02).

1. Untuk penggunaan dalam kominasi beban 5

E = Eh + Ev (2-01)

2. Untuk penggunaan dalam kombinasi beban 7

$$E = Eh - Ev$$

Dengan Eh dan Ev ditentukan oleh persamaan (2-03) dan (2-04):

 $Eh = \rho QE$ $Ev = 0.2 S_{ds}D$ (2-04) Dimana : U = Kuat perlu

D = Beban mati

L = Beban hidup

Lr = Beban hidup pada atap

R = Beban hujan

W = Beban angina

E = Beban gempa

Eh = penngaruh beban gempa horizontal

Ev = pengaruh beban vertical

P = faktor redundasi

QE = pengaruh gaya gempa horizontal dari V atau Fp

SDS = parameter percepatan *spectrum respons* desain pada perioda pendek

2.2.2 Langkah-Langkah SAP

1. Menggambar Model Grid

Klik menu file *New Model*, pada option *Defaul Unit* pilih KN,m,C (satuan sesuai data). pada *Option Select Template* klik *Grid Only*, maka akan tampil kotak dialog *Quick Grid Lines*, input data struktur seperti pada gambar.

S Quick Grid Lines	×
Cartesian Cylindrical	
GLOBAL	
Number of Grid Lines	
X direction	4
Y direction	4
Z direction	6
Grid Spacing	
× direction	5
Y direction	5
Z direction	4
First Grid Line Location	
X direction	0.
Y direction	0.
Z direction	0.
ок	Cancel
Gambar 2.1 J	anut data Grid

2. Merencanakan Material Struktur

 a. Lakukan Define – Materials pada kotak dialog Define – Materials klik Add New Materials, pada material type pilih Concrete dan setelah pilih User klik ok kemudian isikan kotak dialog Mateials Property Data, sesuai data-data pada gambar.

Material Name and Display Color	Fe 3	0	
Material Type	Con	crete	
Material Grade			
Material Notes		Modify/Sh	ow Notes
Weight and Mass			Units
Weight per Unit Volume	2.400E-05		N, mm, C
Mass per Unit Volume	2.447E-09		
sotropic Property Data			
Modulus Of Elasticity, E			25742.96
Poisson, U			0.2
Coefficient Of Thermal Expansio	n, A		9.900E-06
Shear Modulus, G			10726.233
Other Properties For Concrete Ma	terials		
Specified Concrete Compressive	e Strength, fc		30.
Expected Concrete Compressive	e Strength		30.
Lightweight Concrete			
Shear Strength Reduction F	actor		
Switch To Advanced Property [Display		

Gambar.2.2. *Input* data material beton

b. Buat material tulangan baru, klik *Add New Materials* maka akan muncul kotak dialog *Add Materials Property*, maka material *type* pilih rebar dan standar pilih *User* klik ok. kemudian isikan kotak dialog *Materials Property* data sesuai pada gambar.

-
2

Gambar. 2.3. Input data material tulangan

3. Membuat Penampang Struktur

a. Penampang Balok

Input elemen balok dilakukan dengan cara Define- Section Properties-Frame Section. pada dialog Define Frame Properties pilih Add New Properties maka akan muncul kotak dialog Add Frame Section Properties pada Option Frame Section Property Type pilih Concrete dan pilih Rectangular maka akan muncul kotak dialog Rectangular Section. pada Option material pilih Fc30 (sesuai material yang telah dibuat) dan isikan Section Name dengan B1 25/50lalu isikan Depth dan Width.

Gambar.2.5. Input Properties Balok

Klik *Concrete Reinforcement* maka akan muncul kotak dialog *Reinforcement* data. pada *Option Design Type* pilih *Beam* dan pada *Option Concrete Cover to Longitudinal Rebar Center* atau selimut beton isikan 0.04 untuk *Top* dan 0.04 untuk *Bottom*.

Rebar Material					
Longitudinal Ba	rs	+	BJ 57		\sim
Confinement Ba	ars (Ties)	+	BJ 57		\sim
Design Type					
O Column (P-I	M2-M3 Desig	jn)			
Beam (M3 [Design Only))			
Concrete Cover	to Longitudir	nal Reba	r Center		
Тор				0.04	
Bottom				0.04	
Reinforcement C	verrides for	r Ductile	Beams		
		Left		Right	
Тор	0.			0.	
Bottom	0.			0.	
		_			
	OK		Ca	ncel	

Kembali pada kotak dialog kotak dialog *Rectangular Section* pada Option Property Modifie klik Set Modifie, maka akan muncul kotak dialog Frame property/Stiffnes Modification Factors.

Lalu isikan momen *Of Inerscia About 2 Axis* diisi dengan 0.35 dan *Torsion Constant* diisi dengan 0.25. hal ini dilakukan karena presentase penampang efektif momen inersia pada beton <100% berdasarkan SNI 2847:2019 pasal6.6.3.1.1. pada torsi juga direduksi sebesar 25% untuk menyeimbangkan nilai reduksi terhadap inersia elemen struktur.

Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	0.25
Moment of Inertia about 2 axis	0.35
Moment of Inertia about 3 axis	0.35
Mass	1
Weight	1

Gambar.2.7. Input Frame property/Stiffnes Modification Factors balok

Lalu untuk pembuatan dimensi balok B2 (25/40) dengan cara yang sama dengan balok B1 diatas.

b. Penampang Kolom

Input elemen kolom dilakukan dengan cara Define – Section properties – Frame Section. pada dialog Define Frame Properties pilih Add New Property maka akan muncul kotak dialog Add Frame Section Properties.

Pada Option Frame Section Properties Type pilih Concrete dan pilih Rectangular maka akan muncul kotak dialog Rectangular Section. pada Option Materials pilih Fc30 (sesuai material yang telah dibuat dan isikan Section Name dengan K1 45/45 lalu isikan Depth dan Width-nya.

Cross-section (axial) Area	1
Shear Area in 2 direction	1
Shear Area in 3 direction	1
Torsional Constant	0.25
Moment of Inertia about 2 axis	0.35
Moment of Inertia about 3 axis	0.35
Mass	1
Weight	1

Gambar.2.8. Input Properties kolom

- 1. Klik Concrete Reinforcement maka akan muncul kotak dialog Reinforcement Data. pada Option Design Type pilih Colum.
- 2. Pada Option Longitudinal Bars pilih BJ 57 (sesuai material yang telah dibuat) dan pada Option Confinement Bars (Ties) pilih BJ 57.

Rebar Material			
Longitudinal Bars +	F BJ 57	7	~
Confinement Bars (Ties)	⊦ BJ 57	7	~
Design Type			
Column (P-M2-M3 Design)			
O Beam (M3 Design Only)			
Reinforcement Configuration	Confi	nem	ent Bars
Rectangular	• T	ies	
O Circular	() s	pira	1
Longitudinal Bars - Rectangular Co	onfigurat	ion	
Clear Cover for Confinement Bar	s		0.04
Number of Longit Bars Along 3-di	ir Face		3
Number of Longit Bars Along 2-di	ir Face		3
Longitudinal Bar Size		+	#9 ~
Confinement Bars			
Confinement Bar Size		+	#4 ~
Longitudinal Spacing of Confinem	nent Bars		0.15
Number of Confinement Bars in 3	-dir		3
Number of Confinement Bars in 2	2-dir		3
Check/Design			
O Reinforcement to be Checked			ОК

Gambar.2.9. Input data Reinforcement kolom

- 3. Kembali pada kotak dialog kotak dialog *Rectangular Section* pada Option property Modifiers klik Set Modifiers, maka akan muncul kotak dialog Frame Property/Stiffness Modification Factors.
- 4. Lalu isikan Momen of Inertia about 2 axis diisi dengan 0,7 dan *Torsion Constant* diisi dengan 0,25. hal ini dilakukan karena persentase penampang efektif moment inersia pada beton < 100 % berdasarkan SNI 2847 : 2019 Pasal 6.6.3.1.1. pada torsi juga direduksi sebesar 25% untuk menyeimbangkan nilai reduksi terhadap inersia elemen struktur.

	Property/Stiffness Modifiers for Analysis	
	Cross-section (axial) Area	1
	Shear Area in 2 direction	1
	Shear Area in 3 direction	1
	Torsional Constant	0.25
	Moment of Inertia about 2 axis	0.7
	Moment of Inertia about 3 axis	0.7
	Mass	1
	Weight	1
	ОК	Cancel
		A.//
(Gambar.2.10. Input Frame	e Properties/Stiffne

Untuk pembuatan dimensi Kolom K2 (35/35) dengan cara yang sama dengan kolom K1diatas.

c. Penampang Pelat

Pelat lantai dimodelkan sebagai *Shell*, sehingga selain menerima gaya vertikal akibat beban mati dan hidup, pelat juga diasumsikan menerima gaya horizontal/ lateral akibat gempa.

 Input elemen pelat lantai dilakukan dengan cara Define – Section Properties – Area Section. Pada kotak dialog Area Sections pilih Add New Section maka akan munculkotak dialog Shell Section Data.

- 2) Isikan Section Name dengan Pelat 14 untuk pelat lantai. pada option material name pilih Fc 30.
- 3) Isikan pada Option Thickness untuk Membrane 0.14 dan Bending 0.14
- 4) Pada *Option Type* pilih *Shell* (karena pelat lantai dimodelkan sebagai elemen (*Shell*).

Section Name Pelat 14	Display	Color
Section Notes Modify/	Show	
Гуре	Thickness	
Shell - Thin	Membrane 0.1	14
O Shell - Thick	Bending 0.1	14
O Plate - Thin	Material	
O Plate Thick	Material Name + Fc 30	
O Membrane	Material Angle 0.	
O Shell - Layered/Nonlinear	Time Dependent Properties	
Modify/Show Layer Definition	Set Time Dependent Propertie	S
Concrete Shell Section Design Parameters	Stiffness Modifiers Temp Depende	nt Properties
Modify/Show Shell Design Parameters	Set Modifiers Thermal	Properties
ОК	Cancel	

- 5) Kembali pada kotak dialog kotak dialog Shell Section Data pada Option Stiffness Modifiers klik Set Modifiers, maka akan muncul kotak dialog Property/Stiffness Modification Factors.
- 6) Lalu isikan *Stiffnes Modifiers*. Hal ini dilakukan karenapersentase penampang efektif pada beton < 100 % berdasarkan SNI 2847 : 2019 Pasal 6.6.3.1.1.

	(0.25
Membrane f11 Modifier	0.25
Membrane f22 Modifier	0.25
Membrane f12 Modifier	0.25
Bending m11 Modifier	0.25
Bending m22 Modifier	0.25
Bending m12 Modifier	0.25
Shear v13 Modifier	1
Shear v23 Modifier	1
Mass Modifier	1
Weight Modifier	1

Gambar.2.12. Input Properties/Stiffnes Modification Factors pelat

 Lalu untuk pembuatan element Pelat 12 (pelat atap) dengan cara yang sama dengan pelat 14 diatas.

4. Menggambar Model Elemen Struktur

Pemodelan struktur gedung dilakukan secara 3D dengan memodelkan semua elemen balok, kolom, dan pelat.

a. Menggambar Elemen Balok ERA

Dalam penggambaran elemen struktur maka kita harus mengatur Window atau View penggambarannya.

1). Klik *Draw - Quick frame/Cable/Tendon* atau dengan cara memilih ikon *Quick Draw Frame/Cable* S pada menu bar pada sisi kiri. Maka akan muncul kotak dialog *Propertis of Object*, lalu pada *Setion* pilih *B1 25/50*, (yang digambar adalah balok B1).

2). Gambar elemen balok B1 dengan cara klik grid yang diasumsikan sebagai balok B1 dalam penggambaran usahakan secara teratur dan berurut dimulai secara vertikal kemudian horizontal atau sebaliknya agar memudahkan pembacaan data *Output* SAP2000 nantinya. sehingga hasil akhir penggambaran balok B1.
3). Untuk menampilkan nama frame klik *View* – *Set Display Options* atau dengan cara memilih ikon *Set Display Options* ☑ pada menu bar pada sisi atas. maka akan muncul kotak dialog *Display Options* pada option *Frames* pilih *Sections*.

Gambar.2.12. Penggambaran elemen balok B1

4). Selanjutnya gambar elemen balok B2 dengan cara yang sama. hasil

penggambaran.

Gambar.2.13. Penggambaran elemen balok B2

b. Menggambar Elemen Kolom

1). Atur tampilan pada *Window* dengan Klik Set XZ View **XZ** pada *Toolbar* sisi atas.

2). Klik ikon *Quick Draw Frame/Cable* S pada menu bar pada sisi kiri lalu pada *Setion*pilih *K1 45/45*, (yang digambar adalah balok K1), dan gambar elemen balok K1 dengan cara klik grid yang diasumsikan sebagai Kolom K1.

3). Selanjutnya gambar elemen kolom K2 dengan cara yang sama. sehingga hasil akhir penggambaran.

c. Menggambar Elemen Pelat

1). Klik ikon *Quick Draw Area* apada *menu bar* pada sisi kiri. Maka akan muncul kotak dialog *Propertis Of Object*, lalu pada *Setion* pilih *Pelat 14*, (yang digambar adalah pelat lantai).

2). Gambar pelat lantai dengan cara mengklik ditengah area pelat satu persatu, dalam penandaan usahakan secara berurut agar memudahkan pembacaan data *Output*.

Gambar.2.15. Penggambaran elemen pelat lantai

3). Selanjutnya gambar elemen pelat atap dengan cara yang sama sehingga hasil akhir penggambaran.

Gambar.2.16. Penggambaran elemen pelat atap

4). Untuk penampilkan 3D Frame pada *Window 3-D View*, dapat dilakukan dengan cara klik ikon *Set Display Options* **☑** pada menu bar pada sisi atas. maka akan muncul kotak dialog *Display Options* klik menu *General Option*.

Object Options	General Options	
View by Colo	rs of	View Type
 Objects 		O Standard
O Sections		Offset
 Material 	s	Extrude
O Color Pr	inter	General
O White B	ackground, Black Objects	Shrink Objects
O Selected	l Groups	Fill Objects
	Select Groups	Show Edges
		Show Edges
Miscellaneou	s	Show Reference Lines
Show A	nalysis Model (If Available)	Show bounding boxes
Show Jo	ints Only for Objects in View	
Show G	uide Structure	
Apply to	All Windows	
	Reset Form to Defau	ult Values
	Reset Form to Current Wi	ndow Settings
	OK Close	Apply

5) Pada option View Tpe klik Extrude dan pada option General klik Fill Objects.

25

6) Lakukan hal yang sama pada window *X-Y Plane* namun pada option *Extrude* tidakperlu di klik.

Gambar.2.18. Hasil model elemen struktur

5. Menetapkan Jenis Perletakan/Restraint

Pemodelan pondasi diasumsikan sebagai jepit, karena desain pondasi yang menggunakan *bore pile* (pondasi dalam), sehingga kedudukan pondasi dianggap tidak mengalami rotasi dan translasi. pemodelan tumpuan tersebut dapat dilakukan dengan klik semua kolom pada lantai dasar, kemudian *Assign – Joint – Restrains*.

Gambar.2.19. Membuat Perletakan Jepit pada Pondasi

6. Meshing Pelat Lantai dan Atap

Element Shell yang dipakai untuk memodelkan pelat lantai dan atap beton perlu dibagi kedalam pias-pias kecil sejumlah tertentu. hal ini disebabkan alasan konvergensi, yaitu penyebaran gaya dari pelat ke balok disekitarnya akan makin baik jika terdapat makin banyak pias pada pelat lantai. jika jumlah pias terlalu sedikit, atau tidak dilakukan pembagian pias, hasil yang didapatkan relatif kasar (missal *Ouput* lendutan atau momen yang terlalu besar atau kecil). jika terlalu banyak pias akan menyebabkan ukuran file dan waktu analisis semakin besar. pembagian pada element *Shell* dapat dilakukan dengan cara pilih semua element pelat kemudian klik menu *Assign – Area – Automatic Area Mesh*. maka akan muncul kotak dialog *Assign Automatic Area Mesh*pilih *Auto Mesh Area Into This Number Of Objects*. Pada option *Along Edge From point 1 to 2* input 5 dan pada *Option Along Edge from point 1 to 3* input 5 (dalam kasusini pelat dibagi menjadi 5 x 5 bagian).

Gambar.2.20. Devide pelat lantai dan atap

7. Mengaplikasikan Pembebanan

Jenis beban yang bekerja pada gedung meliputi :

- Beban mati sendiri elemen struktur (*Dead Load*) Meliputi : balok, kolom, *Shear Wall*, dan plat.
- Beban mati elemen tambahan (*SuperDead Load*)

Meliputi : dinding, keramik, plesteran, plumbing, ME (mechanical electrical) , dll.

Beban hidup (Live Load) ERA BARA

Meliputi : beban luasan per m² yang ditinjau berdasarkan fungsi bangunan.

• Beban Gempa (*Earthquake Load*) :

Meliputi : beban gempa statik ekuivalen dan dinamik (respons spectrum)

a. Mendefinisikan Jenis Beban

Jenis beban yang bekerja pada struktur gedung dapat diinput dengan cara *Define – Load Patterns* maka akan muncul kotak dialog *Define Load Patterns* input parameter pada gambar berikut.

Load Patterns	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Click To: Add New Load Pattern
DEAD	Dead	v 1		\sim	Add Copy of Load Pattern
DEAD Super Dead Live	Dead Super Dead Live	1 0 0			Modify Load Pattern Modify Lateral Load Pattern
				•	Delete Load Pattern
					Show Load Pattern Notes

Gambar.2.21. Jenis – jenis beban yang bekerja

b. Menentukan Penyaluran Beban pada Struktur

1) Beban Mati pada Pelat Lantai

Beban mati yang bekerja pada pelat lantai meliuti :

- a) Berat pasir setebal 1 cm = $0,01 \times 16 = 0,16 \text{ kN/m}^2$
- b) Berat spesi setebal 3 cm = $0,03 \times 22 = 0,66 \text{ kN/m}^2$
- c) Berat keramik setebal 1 cm = $0,01 \text{ x } 22 = 0,22 \text{ kN/m}^2$
- d) Berat plafon dan penggantung = 0.2 kN/m²
- e) Berat Instalasi ME = $0,25 \text{ kN/m}^2$
- f) Total beban mati pada plat lantai = $1,49 \text{ kN/m}^2$

2) Beban Mati pada Pelat Atap

Beban mati yang bekerja pada pelat lantai meliuti :

- a) Berat *Waterproofing* dengan aspal tebal 2 cm = $0.02 \times 14 = 0.28 \text{ kN/m}^2$
- b) Beban plafon dan penggantung = 0.2 kN/m^2
- c) Berat Instalasi ME

 $= 0,25 \text{ kN/m}^2$

d) Total beban mati pada plat lantai = 0.73 kN/m^2

Beban mati didistribusikan pada pelat secara merata dengan cara memilih elemen pelat, kemudian *Assign – Area Loads – Uniform (Shell)* pada *Option Load Pattern* pilih *Super Dead* distribusi beban mati yang bekerja pada pelat ditunjukkan pada gambar berikut.

Gambar.2.22. Distribusi beban mati pada pelat lantai

3) Beban Mati pada Balok

Beban mati yang bekerja pada balok meliputi :

a) Beban dinding pasangan bata $\frac{1}{2}$ batu (4m - 0.5) x 2,50 = 8,75 kN/m

Dinding gedung ini diasumsikan terletak dibalok tepi keliling bangunan pada LT.1 sampai LT.4. beban dinding pada balok diinput dengan cara Assign – Frame Loads – Distributed. pada Option Load Pattern pilih Super Dead dan pada Option Uniform Load input 8.75 seperti pada gambar berikut.

rame Distributed Loads (Super Dead)	• X	Area Uniform (Li	ve) (GLOBAL)			
0 0	1 1					
(Å) (B) (c O					
	S Assign Frame	listributed Loads			-	×
	General			Opti	ons	
	Load Pattern	Super De	ad	~ C	Add to Existin	ng Loads
	Coordinate Sys	GLOBAL		•	Replace Exist	ing Loads
	Load Direction	Gravity		~ C	Delete Existin	ng Loads
	Load Type	Force		- Unifi	orm Load	
				. 8./	, ,	kN/m
	Trapezoidal Loa	s 1.	2	3.	4.	
	Relative Distan	e 0	0.25	0.75	1	
	Loads	0	0	0	0	kN/m
	Relative D	stance from End-I	O Absolute D	istance from End	4	
			Keset Form to Defau	It Values		
	· · · · · · · · · · · · · · · · · · ·	OK	Close	Apply		
->x				· \		
				~	×	

Gambar.2.23. Distribusi beban mati pada balok

4) Beban Hidup (Live Load)

Beban hidup adalah beban yang bekerja pada lantai bangunan tergantung dari fungsi ruang yang digunakan. besarnya beban hidup lantai bangunan ditentukan berdasarkanacuan SNI 1727 – 2020 Tabel 4.3-1

edung perkantoran				
Ruang arsip dan komputer harus				
dirancang untuk beban yang				
lebih berat berdasarkan pada				
perkiraan hunian				
Lobi dan koridor lantai pertama	100 (4.79)	Ya (4.7.2)	Ya (4.7.2)	2.000 (8,90)
Kantor	50 (2,40)	Ya (4.7.2)	Ya (4.7.2)	2.000 (8,90)
Koridor di atas lantai pertama	80 (3.83)	Ya (4.7.2)	$Y_{a}(4,7,2)$	2,000 (8,90)

Gambar.2.25. Beban hidup lantai atap

Input beban hidup dilakukan dengan cara memilih semua elemen pelat lantai, kemudian *Assign – Area Loads – Uniform (Shell)*. ada option *Load Pattern* pilih *Live* dan input beban hidup sesuai pada gambar berikut.

Gambar.2.26. Distribusi beban hidup pada lantai gedung (2,4 kN/m²) Untuk beban hidup pada lantai atap ulangi dengan cara yang sama.

8. Mengaplikasikan Beban Gempa

Analisis beban gempa dilakukan dengan 2 cara yaitu statik ekivalen dan dinamik *Respons Spektrum*. dalam mendefinisikan beban gempa untuk wilayah Palu , sebelumya dapat mengacu pada tata cara perencanaan tahan gempa untuk gedung SNI 03-1726-2019.

a. Gempa Statik Ekivalen

Beban gempa statik ekivalen adalah penyederhanaan dari perhitungan beban gempa yang sebenarnya, dengan asumsi tanah dasar dianggap tetap (tidak bergetar), sehingga beban gempa diekuivalensikan menjadi beban lateral statik yang bekerja pada pusat massa struktur tiap lantai bangunan. perhitungan gempa statik ekuivalen dapat dilakukan secara otomatis dengan *Auto Lateral Loads* dan secara manual dengan cara menginput besarmya beban gempa ke pusat massa struktur tiap lantai. ilustrasi dari perencanaan gempa dengan metode statik ekivalen ditunjukkan pada gambar berikut.

Gambar.2.27. Ilusi dari analisis gempa dengan metode static ekuivalen

Parameter gempa dapat diperoleh melalui *Website* rsapuskim2019.litbang.pu.go.id atau dihitung secara manual berdasarkan SNI 1726 - 2019. pada contoh ini parameter gempa dihitung secara manual, berikutnya, berikut hasil parameter gempa yang digunakan adalah sebagai berikut:

- Ss = 0.9153 g (percepatan batuan dasar periode 0,2 detik)
- S1 = 0.4008 g (percepatan batuan dasar periode 1 detik)
- Tl = 12 detik (periode transisi jangka panjang)

Kelas Situs = D (tanah sedang)

- R = 8 (faktor reduksi gempa SRPMK)
- Ω = 3 (faktor faktor kuat lebih)
- Cd = 5.5 (faktor pembesaran defleksi)
- I = 1 (faktor keutamaan gedung)
- T = 0,967 detik (periode fundamental)

Langkah input beban gempa statik ekivalen dapat dilakukan dengan cara:

 Klik menu *Define – Load Patterns* dan isikan beban gempa (SX untuk arah x-x dan SY untuk arah y-y). pada *Option Type* pilih *Quake* seperti pada gambar berikut.

Load Patterns				Cli	ck To:
Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
SY	Quake ~	0	ASCE 7-16	/	Add Copy of Load Pattern
DEAD Super Dead Live	Dead Super Dead Live	1 0 0			Modify Load Pattern
SX SY	Quake Quake	0	ASCE 7-16 ASCE 7-16		Modify Lateral Load Pattern
					Delete Load Pattern
					Show Load Pattern Notes

Gambar.2.28. Define beban gempa static ekuivalen

- Pada bagian barisan SX pada kolom *Auto Lateral Load pattern* pilih ASCE 7-16. (dipilih ASCE 7-16 ini karena parameter-parameter didalamnya juga sama dengan SNI 1726-2019. tinggal disesuaikan dengan zona peta gempa indonesia).
- 3) Klik *Modify Load Patern*. selanjutnya, klik *Modify Lateral Load Patern*. isikan parameter gempa seperti pada gambar berikut.

coud birootion and biapin agin coo	entricity	Seismic Coefficients	
Global X Direction		0.2 Sec Spectral Accel, Ss	0.9153
Global Y Direction		1 Sec Spectral Accel, S1	0.4008
Ecc. Ratio (All Diaph.)	0.05	Long-Period Transition Period	12.
Override Diaph. Eccen.	Override	Site Class	
Time Period		Site Coefficient Fa	1 1339
Approx. Period Ct (ft), >	=	Site Coefficient Ev	1 8992
Program Calc Ct (ft) >	=	Site Coefficient, PV	1.0002
Iter Defined	T = 0.967	Calculated Coefficients	
User Defined		SDS = (2/3) * Fa * Ss	0.6919
Lateral Load Elevation Range		SD1 = (2/3) * Fv * S1	0.5075
Program Calculated			
 User Specified 	Reset Detauits		
Max Z		Eastern	
Min Z		Response Modification R	18.
		System Overstrength Omega	3
		Deflection Amplification Od	5.5
OK Cano	bel	Deflection Amplification, Cd	0.0

Gambar.2.29. Input gempa static ekivalen arah x-x

Ulangi dengan cara yang sama pada gempa statik arah y-y, seperti pada gambar diatas.

		17 N
Global X Direction	0.2 Sec Spectral Accel, Ss	0.9153
Global Y Direction	1 Sec Spectral Accel, S1	0.4008
Ecc. Ratio (All Diaph.) 0.05	Long-Period Transition Period	12.
		Secondary (
Override Diaph. Eccen. Override	Site Class	D ~
ime Period	Site Coefficient, Fa	1.1339
Approx. Period Ct (ft), x =	Site Coefficient, Fv	1.8992
Program Calc Ct (ft), x =		
User Defined T = 0.967	Calculated Coefficients	0.6010
steral Load Elevation Dance	SDS = (2/3) * Fa * Ss	0.6919
	SD1 = (2/3) * Fv * S1	0.5075
User Specified Reset Defaults		
Max Z		
Min Z	Factors	- (
	Response Modification, R	8.
	System Overstrength, Omega	3.
OK Cancel	Deflection Amplification, Cd	5.5
Cullect		

Gambar.2.30. Input gempa static ekuivalen arah y-y

b. Gempa Dinamik Respon Spectrum Respons spektrum adalah suatu spectrum yang disajikan dalam bentuk grafik/plot antara periode getar struktur T versus respon-respon maksimum berdasarkan rasio redaman dan gempa tertentu. respon-respon maksimum dapat berupa simpangan maksimum (Spectral Displacement, SD), kecepata maksimum (Spectral Velocity, SV) atau percepatan maksimum (Spectral Acceleration, SA) dari massa struktur single degree of freedom (SDOF).

Gambar.2.31. Grafik respon spectrum SNI 1726 : 2019

Langkah input beban gempa dinamik spektrum dapat dilakukan dengan cara:

 Pilih pada menu *Define - Functions - Response Spectrum*. Pada *Option Chose Function Type to Add* pilih *ASCE 7-16*. maka akan muncul kotak dialog *Response Spectrum ASCE 7-16 Function Defenition* dan isikan seperti pada Gambar 2.31. dengan parameter-parameter diambil dari gambar input gempa statik ekivalen arah x-x.

 Lalu input faktor pengali respon spektrum dengan cara pilih pada menu Define - Load Case - Respons Spectrum, maka akan muncul kotak dialog Define Load Cases seperti pada gambar berikut.

ise
·'
Case
Case
se
Free

Gambar.2.33. Define Load Case

- Pada option Click to Plih Add New Load Case maka akan muncul kotak dialog Load Case Data. Pada Option Load Case Type pilih Response Spectrum dan isikan Load Case Name dengan DX.
- 4) Pada Option kolom Load Name pilih U1 dan pada Option Function pilih RS Palu (sesuai yang telah didefinisikan sebelumnya) lalu pada Option Scale Factor isikan 1.2263. (Penentuan Scale Factor berdasarkan SNI 1726 : 2019 yaitu menggunakan formula = g x I / R = 9.81 x I / 8 = 1,2263. Dimana g = gravitasi bumi, I = faktor keutamaan gedung dan R = faktor reduksi gempa).

DY Set Def Name	Iotes Load Case Type Modify/Show Response Spectrum
Vodal Combination	Directional Combination
1 200 (SRSS
O SRSS	
GMC 12	0. O Absolute
O GMC Periodic + Rigid Type	SRSS V Scale Factor
O NRC 10 Percent	Mass Source
O Double Sum	Previous (MSSSRC1)
- Modal Load Case	Diaphragm Eccentricity
Use Modes from this Modal Load Case	ODAL V Eccentricity Ratio 0.
Standard - Acceleration Loading	
Advanced - Displacement Inertia Loading	Override Eccentricities 0
Loads Applied	
Load Type Load Name Function Scale Factor	
Accel U2 v RS PALU v 1.2263	
Accel U2 RS PALU 1.2263	Add
	Modify
	Delete
Show Advanced Load Parameters	
Other Parameters	
Model Damping Constant at 0.05	OK OK
model Damping	Moury/Show
	Cancel

5). Ulangi pada gempa dinamik arah-Y (DY), tetapi pada pilihan *Load Name* pilih U2 seperti pada gambar berikutnya.

		Notes	Load Case Type	
DY	Set Def Name	Modify/Show	Response Spectrum 🗸	Design
Iodal Combination			Directional Combination	
coc	G	IC f1 1	SRSS	
O SRSS			O CQC3	
Absolute	GN	IC 12 0.	Absolute	
O GMC	Periodic + Rigid	Type SRSS 🗸	Scale Factor	
O NRC 10 Percent			Mass Source	
O Double Sum			Previous (MSSSRC1)	
Iodal Load Case			Diaphragm Eccentricity	
Use Modes from this Moda	Load Case	MODAL ~	Econstricity Patio	
Standard - Acceleration	Loading		Coolinities ratio	
 Standard - Acceleration Advanced - Displacement 	n Loading ent Inertia Loading		Override Eccentricities Ov	verride
 Standard - Acceleration Advanced - Displacement 	n Loading ent Inertia Loading		Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme .oads Applied Load Type Load N	n Loading ent Inertia Loading	ctor	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme dada Applied Load Type Load N Accel U2	a Loading ent Inertia Loading ame Function Scale Fa V RS PALU V 1.2263	ctor	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme oads Applied Load Type Load N Accel U2 Accel U2	n Loading ent Inertia Loading ame Function Scale Fa V RS PALU V 1.2263	ctor	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme Load Applied Load Type Load N Accel U2 Accel U2	ant Inertia Loading anterna Loading arme Function Scale Fa V RS PALU V 1.2263 RS PALU 1.2263	ctor Add	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme coads Applied Load Type Load N Accel U2 Accel U2	ant Inertia Loading ame Function Scale Fa V RS PALU 1.2263 RS PALU 1.2263	Ctor Add Modify	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme ads Applied Load Type Load N Accel U2 Accel U2	ance Function Scale Fa Scale Fanction Scale Fa RS PALU 12263 RS PALU 12263 RS PALU 12263	ctor Add Modify	Override Eccentricities	/erride
Standard - Acceleration Advanced - Displaceme oads Applied Load Type Load N Accel U2 Accel U2	ant Inertia Loading ame Function Scale Fa RS PALU 1.2263 RS PALU 1.2263	Add Modify Delete	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme coads Applied Load Type Load N Accel U2 Accel U2 Accel U2 Accel Show Advanced Load	ant inertia Loading ant inertia Loading arme Function Scale Fa V RS PALU V 1.2263 RS PALU 1.2263 Parameters	Ctor Add Modify Delete	Override Eccentricities	verride
Standard - Acceleration Advanced - Displaceme Advanced - Displaceme Load Nype Load Nype Load N Accel U2 Accel U2 Show Advanced Load ther Parameters	ancoading ant Inertia Loading ame Function Scale Fa V RS PALU V 1.2263 RS PALU 12263 Parameters	Add Modify Delete	Override Eccentricities	verride

Gambar.2.35. Respon spectrum case arah – y

c. Penentuan Massa Struktur

Langkah yang tidak kalah penting adalah defenisi massa struktur yang akan digunakan dalam analisis, karena bila tidak tepat maka gaya atau beban gempa yang dihasilkan juga bisa terlalu kecil atau terlalu besar

Cara mendefinisikan massa struktur *Define - Mass Source - Modify/Show Mass Source*. isikan parameter – parameter seperti pada gambar

Mass Source Data		
Mass Source Name	MSSSRC1	
Mass Source	l Additional Mass Is	
Mass Multipliers for Load Pa Load Pattern DEAD	Multiplier	
DEAD Super Dead	1.	Add Modify
ок	Cancel	

Gambar.2.36. Penentuan masa gedung

Note : Berdasarkan SNI 1726 2019 Pasal 8.8.1 untuk bangunan gedung perkantoran (selain bangunan gudang/tempat penyimpanan) faktor pengaruh beban hidup dapat diabaikan.

9. Menetapkan Lantai Tingkat Sebagai Diafragma

Pada SNI Gempa 03-1726-2019 disimpulkan bahwa, analisis struktur harus mempertimbangkan kekakuan reltif diafragma dan element vertikal sistem penahan gempa. dalam hal ini, pelat lantai dan atap beton dapat berfungsi sebagai diafragma yang dapat menyumbangkan kekakuan gedung ketika beban lateral bekerja.

Cara mengaplikasi lantai diafragma, pilih menu *Select – All.* selanjutnya pilih menu *Assign – Joint - Constraints.* maka akan tampil kotak dialog *Assign Joint Constrains*klik *Define Joint Constrain* maka akan tampil kotak dialog seperti pada gambar.

Define Constraints	ß
Constraints	Choose Constraint Type to Add
	Click to:
	Add New Constraint
	Modify/Show Constraint
	Delete Constraint
	OK Cancel
	Career

Gambar.2.37. Deefine Constraints

Pada Option Choose Constraint Type to Add pilih diaphragm dan klik Add New Constraint. maka akan muncul kotak dialog Diaphragm Constrain. isikan parameter seperti pada gambar berikut.

	Constraint Name	DIAPH1
	Coordinate System	GLOBAL ~
- 0	Constraint Axis	
	X Axis	Auto
	Y Axis	
	Z Axis	
- 5	Semi-rigid Diaphragm C	ption
	Semi-rigid	
	Note: Defined for a and wind load when the Coo Global and th Axis.	pplication of seismic ds. Option is only active ordinate System is e Constraint Axis is Z
(E	Assign a different	diaphragm constraint to

Gambar.2.38. Input Joint Constraints

10. Mengaplikasikan Kombinasi Pembebanan

Berdasarkan SNI 2847 : 2019 pasal 5.3.1, kombinasi pembebanan terfaktor, yaitu sebagai berikut:

- 1. 1,4D
- 2. 1,2D + 1,6 L + 0,5(Lr atau S atau R)
- 3. 1,2D + 1,6(Lr atau S atau R) + (L atau 0,5W)
- 4. 1,2D + 1,0W + L + 0,5(Lr atau S atau R)
- 5. 1,2D + 1,0L + 1,0E

- 6. 0,9D + 1,0W
- 7. 0,9D + 1,0E

Untuk nomor 5 dan 7 dengan beban gempa diatur oleh SNI 1726 : 2019 pasal 7.4, factor dan kombinasi beban untuk beban mati nominal, beban hidup nominal dan beban gempa nominal, yaitu sebagai berikut:

- 8. $(1,2+0,2 \text{ Sds}) \text{ DL} + 1,0 \text{ LL} \pm 1,0 \rho \text{ EX} \pm 0,3 \rho \text{ EY}$
- 9. $(1,2+0,2 \text{ Sds}) \text{ DL} + 1,0 \text{ LL} \pm 0,3 \rho \text{ EX} \pm 1,0 \rho \text{ EY}$
- 10. $(0.9 0.2 \text{ Sds}) \text{ DL} + 1.0 \text{ LL} \pm 1.0 \text{ } \rho \text{ EX} \pm 0.3 \text{ } \rho \text{ EY}$
- 11. $(0.9 0.2 \text{ Sds}) \text{ DL} + 1.0 \text{ LL} \pm 0.3 \rho \text{ EX} \pm 1.0 \rho \text{ EY}$

Keterangan: DL = beban mati, termasuk SDLLL = beban hidup R = beban hujan W = beban angin Ex = beban gempa arah – x Ey = beban gempa arah – x Fy = faktor redundansi

Sds = parameter percepatan spektrum respons desain pada periode pendek

Berikut ini adalah kombinasi pembebanan yang akan digunakan untuk analisis struktur:Sds (g) = 0,6919 (Palu, Tanah Sedang)

- $\rho = 1,0$ (dapat digunakan 1,0 jika memenuhi syarat SNI 1726:2019 Pasal 7.3.4.2)
- 1. Comb. 1 = 1,4 DL + 1,4 SDL
- 2. Comb. 2 = 1,2 DL + 1,2 SDL + 1,6 LL
- 3. Comb. 3 = 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ex + 0,3 Ey
- 4. Comb. 4 = 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ex 0,3 Ey

5.	Comb. 5	= 1,34 DL + 1,34 SDL + 1,0 LL - 1,0 Ex + 0.3 Ey
6.	Comb. 6	= 1,34 DL + 1,34 SDL + 1,0 LL - 1,0 Ex - 0,3 Ey
7.	Comb. 7	= 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ey + 0,3 Ex
8.	Comb. 8	= 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ey - 0,3 Ex
9.	Comb. 9	= 1,34 DL + 1,34 SDL + 1,0 LL - 1,0 Ey + 0,3 Ex
10.	Comb. 10	= 1,34 DL + 1,34 SDL + 1,0 LL - 1,0 Ey - 0,3 Ex
11.	Comb. 11	= 0,76 DL + 0,76 SDL + 1,0 Ex + 0,3 Ey
12.	Comb. 12	= 0,76 DL + 0,76 SDL + 1,0 Ex - 0,3 Ey
13.	Comb. 13	= 0,76 DL + 0,76 SDL - 1,0 Ex + 0,3 Ey
14.	Comb. 14	= 0,76 DL + 0,76 SDL - 1,0 Ex - 0,3 Ey
15.	Comb. 15	= 0,76 DL + 0,76 SDL + 1,0 Ey + 0,3 Ex
16.	Comb. 16	= 0,76 DL + 0,76 SDL + 1,0 Ey $-$ 0,3 Ex
17.	Comb. 17	= 0,76 DL + 0,76 SDL - 1,0 Ey + 0,3 Ex
18.	Comb. 18	= 0,76 DL + 0,76 SDL - 1,0 Ey - 0,3 Ex
19.	Gravitasi	= 1,2 DL + 1,2 SDL + 1,0 LL
20.	Envelope	TERA BAT

21. Cara input kombinasi pembebanan tersebut dengan cara *Define – Load Combination – Add New Combo*. Pilih *Add New Combo* input sesuai pada gambar berikut.

Gambar.2.39. Input beban kombinasi (comb.3) dan Envelope

Untuk kombinasi 1,2, 4 s/d18 dan gravitasi dapat diinput dengan cara yang sama. *Note :* dalam contoh ini, kombinasi beban gempa yang digunakan yaitu metode dinamik respons spektrum, metode statik ekivalen hanya digunakan sebagai pengontrol gaya geser dasar gempa yang akan dihitung lebih lanjut.

11. Pengecekan Perilaku Struktur

Setelah pemodelan struktur dan pembebanan selesai digunakan, maka struktur perlu dicek terhadap standar dan persyaratan yang berlaku sebagai berikut.

a. Pemeriksaan Jumlah Ragam

Pada SNI 1726 : 2019 Pasal 7.9.1.1 disebutkan bahwa analisis harus menyertakan jumlah ragam yang cukup untuk mendapatkan partisipasi massa ragam terkombinasi sebesar paling sedikit 90% dari massa aktual dalam masing-masing arah horizontal ortogonal dari respon yang ditinjau oleh model.

Besarnya partisipasi massa tersebut dapat diketahui dengan Run – Display – Show Table – maka akan muncul kotak dialog Choose Tables for Display pada Option Analysis Result pilih Structure Output – Modal Information – Table : Modal Participating Mass Ratio. lihat kolom SumUX & SumUY seperti pada gambar berikut.

S Mo	dal Participating	Mass Ratios								
File	View Edit	Format-Filter	-Sort Select	Options						
Units:	As Noted				Moda	I Participating M	ass Ratios			~
Filter:										
	OutputCase	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumUY Unitless	SumUZ Unitless
•	MODAL	Mode	1	1.438237	0.34167	0.47933	8.661E-20	0.34167	0.47933	8.661E-20
	MODAL	Mode	2	1.438237	0.47933	0.34167	0	0.821	0.821	8.729E-20
	MODAL	Mode	3	1.302775	0	0	0	0.821	0.821	9.303E-20
	MODAL	Mode	4	0.4586	0.10552	0.00048	4.567E-16	0.92653	0.82149	4.568E-16
	MODAL	Mode	5	0.4586	0.00048	0.10552	2.563E-18	0.92701	0.92701	4.594E-16
	MODAL	Mode	6	0.416587	1.187E-20	0	0	0.92701	0.92701	4.594E-16
	MODAL	Mode	7	0.258006	0.02303	0.02033	7.538E-17	0.95004	0.94734	5.348E-16
	MODAL	Mode	8	0.258006	0.02033	0.02303	4.971E-15	0.97038	0.97038	5.506E-15
	MODAL	Mode	9	0.238181	1.04E-18	8.304E-17	5.986E-16	0.97038	0.97038	6.105E-15
	MODAL	Mode	10	0.173589	0.00313	0.01896	2.182E-18	0.9735	0.98933	6.107E-15
	MODAL	Mode	11	0.173589	0.01896	0.00313	2.768E-19	0.99246	0.99246	6.107E-15
	MODAL	Mode	12	0.164716	2.913E-20	1.099E-20	5.343E-18	0.99246	0.99246	6.112E-15
<										>
Reco	rd: << <	1 :	>>> of 12	2				Add Tables		Done

Gambar.2.40. Jumlah massa Rations

Berdasarkan output diatas Jumlah Partisipasi massa pada 12 Mode arah-x dan arah-y sebesar 99%. telah memenuhi syarat yaitu sebesar 90% atau 0.9

Note : Jika jumlah ragam yang sudah ditentukan dalam model belum memenuhi syarat, tambahkan jumlah ragam dengan cara klik Unlock Model – Define – Load Cases. Pada Option Load Case Name pilih modal dan pilih Modify/Show Load Case. maka akan muncul kotak dialog Load Case Data – Modal. tambahkan jumlah ragam pada Option Maximum Number of Modes.

b. Perbandingan Geser Dasar VStatik VS VDinamik

Sesuai SNI 1726:2019 pasal 7.9.4.1 mengenai skala gaya, peraturan ini mengisyaratkan bahwa gaya geser dasar dinamik harus lebih besar dari 100 % gaya geser statik. dirumuskan sebagai VD > 100% VS. bila hal tersebut tidak memenuhi maka perlu diberikan skala gaya pada model struktur gedung.

Untuk memeriksa apakah ketentuan tersebut sudah memenuhi oleh struktur yang dimodelkan, klik *Run – Display – Show Table*. pada *Option Analysis Result* pilih *Structure Output – Base Reactions – Table : Base Reactions*. dan pada option *Load Cases (Results)* pilih *DX, DY, SX & SY*. seperti pada gambar berikut.

Gambar2.41. Seleksi Load Case untuk perhitungan geser dan dasar

Geser Dasar	Dinamik (V _D) (kN)	Statik (Vs) (kN)	Faktor Skala Vs/Vp	Kontrol VD > 100% VS
X - Direction	388.084	673.474	1.735	Tidak Memenuhi
Y - Direction	388.084	673.474	1.735	Tidak memenuhi

Tabel.2.1 Hasil penjumlahan geser dasar untuk masing masing gempa

Keterangan :

Dari **Tabel 2.1** tersebut disimpulkan persyaratan gaya geser gempa dinamik belum terpenuhi (VD < VS), maka besarnya VD harus dikalikan nilainya dengan faktor skala. Nilai faktor skala gaya yang dikoreksi, diinput dengan cara klik *Unlock*

Nilai faktor skala gaya yang dikoreksi, diinput dengan cara klik Unlock Model - Define - Load Cases. Pada Load Case Name pilih DX kemudian klik Modify/Show Load Cases. Pada Option Scale Factor input dengan 2.21763 dan pilih Modify seperti pada Gambar. (nilai Scale Factor diinput menggunakan formula = (g*I/R)*FS).

d Case Name Notes			Load Case Type		
DX	Set Def Name	Modify/Show	Response Spectrum	✓ Design	
odal Combination			Directional Combination		
CQC	GMC f	f1 1.	SRSS		
○ SRSS	GMC 1	12 0	O CQC3		
Absolute			 Absolute 		
◯ GMC	Periodic + Rigid Typ	e SRSS ~	Scale Factor		
O NRC 10 Percent			Mass Source		
O Double Sum			Previous (MSSSRC1)		
odal Load Case			Diaphragm Eccentricity		
Use Modes from this Modal Load	Case	MODAL ~	Eccentricity Ratio	0	
Standard - Acceleration Loading	ng		,		
Advanced - Displacement Inert	tia Loading		Override Eccentricities	Override	
 Advanced - Displacement Inert oads Applied 	tia Loading		Override Eccentricities	Override	
 Advanced - Displacement Inert oads Applied Load Type Load Name 	tia Loading Function Scale Factor		Override Eccentricities	Override	
○ Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 ~	Function Scale Factor		Override Eccentricities	Override	
Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 V1	Function Scale Factor RS PALU 212763 RS PALU 212763	bbA	Override Eccentricities	Override	
Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 ~ Accel U1	Function Scale Factor RS PALU 212763 RS PALU 212763	Add	Override Eccentricities	Override	
O Advanced - Displacement Inertoods Applied Load Type Load Name Accel U1 ∽ Accel U1	Function Scale Factor RS PALU 212763 RS PALU 212763	Add Modify	Override Eccentricities	Override	
Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 Accel U1	Function Scale Factor RS PALU 212763 RS PALU 212763	Add Modify Delete	Override Eccentricities	Override	
Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 Accel U1 Show Advanced Load Param	tia Loading Function Scale Factor RS PALU 212763 RS PALU 212765 LI2765 eters	Add Modify Delete	Override Eccentricities	Override	
Advanced - Displacement Inert oads Applied Load Type Load Name Accel U1 Accel U1 Show Advanced Load Parame ther Parameters	tia Loading Function Scale Factor RS PALU 212763 RS PALU 212763 eters	Add Modify Delete	Override Eccentricities	Override	

Gambar.2.42. Koreksi skala faktor gempa dinamik arah x

Ulangi dengan cara yang sama pada gempa dinamik arah y-y

c. Pemeriksaan Simpangan Antar Lantai

Berdasarkan SNI 1726:2019 pasal 7.8.6 penentuan simpangan antar lantai desain (Δ) harus dihitung sebagai perbedaan defleksi pada pusat massa ditingkat teratas dan terbawah yang ditinjau seperti pada gambar berikut.

Berdasarkan SNI 1726:2019 pasal 7.12.1. Simpangan antar tingkat desain tidak boleh melebihi simpangan antar tingkat izin seperti didapatkan

Struktur	K	ategori risil	(0
Struktur	l atau II	III	IV
Struktur, selain dari struktur dinding geser batu bata, 4 tingkat atau kurang dengan dinding interior, partisi, langit-langit dan sistem dinding eksterior yang telah didesain untuk mengakomodasi simpangan antar tingkat.	0,025 <i>h_{sx}^c</i>	0,020 <i>h_{sx}</i>	0,015 <i>h</i> _{sx}
Struktur dinding geser kantilever batu bata ^d	0,010 <i>h</i> _{sx}	0,010 <i>h</i> _{sx}	0,010 <i>h</i> _{sx}
Struktur dinding geser batu bata lainnya	$0,007h_{sx}$	$0,007h_{sx}$	0,007 <i>h</i> _{sx}
Semua struktur lainnya	0,020 <i>h</i> _{sx}	0,015 <i>h</i> _{sx}	0,010 <i>h</i> _{sx}

Tabel.2.2. Simpangan antar tingkat izin (sumber tabel 2.2. SNI 1726:2019)

Untuk sistem rangka pemikul momen pada struktur yang didesain KDS D simpangan antar tingkat desain tidak boleh melebihi $\Delta a/\rho$ untuk semua tingkat. maka simpangan antar lantai ditentukan persamaan berikut :

$$\Delta_{\rm x} = \frac{\delta \delta \ x \ C d}{l} < \Delta_{\rm a} \qquad \longrightarrow \qquad \Delta_{\rm a} = \frac{0,025 \ h_{\rm x}}{\rho}$$

Keterangan :

 $\Delta x = simpangan antar lantai$

- $\Delta a = simpangan Ijin$
- δ = defleksi yang terjadi
- I = faktor keutamaan gempa

Cd = Faktor pembesaran defleksi

Sebelum melihat defleksi yang terjadi, terlebih dahulu menampilkan nomor joint pada struktur, dengan cara pilih menu View – Set Display Options pada Option Joints pilih Labels seperti pada gambar berikut.

bject Options General G	Options	
Joints Z Labels Springs Local Axes Not in View Frames Labels Sections Releases Local Axes Not in View	Cables Cables Cables Sections Not in View Tendons Cables C	Solids Sections Cocal Axes Not in View Links Labels Sections Local Axes Not in View
Apply to All Window	Reset Form to Default Valuet Form to Current Window 3 K Close	Settings Apply

Gambar.2.44. Set display Options

Pada masing-masing lantai akan keluar *joint* seperti pada gambar dibawah. dan pilih joint yang akan ditinjau (pada contoh ini dipilih joint pada pojok kanan atas).

Gambar.2.45. Joint label pada atap (elevasi 20 m)

Untuk melihat defleksi yang terjadi, dengan terlebih dahulu mengganti satuan jarak menjadi mm. klik *Run – Display – Show Table* Pada option *Analysis Result* pilih *Joint Output – Displacements – Table : Joint Displacements*. dan pada option *LoadCases (Results)* pilih *DX & DY*. seperti pada gambar berikut.

S Choose Tables for Display	×
Edit	
Image: Model DEFINITION (0 of 72 tables selected) Image: Property Definitions Image: Property Definitions Image: Definitions Imag	Load Patterns (Model Def.) Select Load Patterns 5 of 5 Selected Load Cases (Results) Select Load Cases 2 of 29 Selected Modify/Show Options X et Output Selections is Selection Only Show Unformatted J Sets Save Named Set Show Named Set Delete Named Set
Table Formats File Current Table Formats File: Program Default	

Gambar.2.46. Pilihan untuk menampilkan defleksi

ile	View	Edit	Format-Filter	r- Sort Se	lect Options						
nits: Iter:	As Noted					Joint	Displacements				
	Join Tex	t t	OutputCase	CaseTyp Text	e StepType Text	U1 mm	U2 mm	U3 mm	R1 Radians	R2 Radians	R3 Radians
	1	6	DX	LinRespSp	ec Max	9.814025	1.092E-07	0.13303	1.9E-05	0.002354	2.866E-
	1	6	DY	LinRespSp	ec Max	4.692E-08	9.814025	0.13303	0.002354	1.9E-05	2.826E-
	2	3	DX	LinRespSp	ec Max	24.694472	3.046E-07	0.229469	1.6E-05	0.002471	1.376E-
	2	3	DY	LinRespSp	ec Max	5.023E-08	24.694472	0.229469	0.002471	1.6E-05	2.202E-
	4	8	DX	LinRespSp	ec Max	37.704846	3.098E-07	0.287429	1.1E-05	0.001991	2.984E-
	4	8	DY	LinRespSp	ec Max	5.416E-08	37.704846	0.287429	0.001991	1.1E-05	3.358E-
	6	4	DX	LinRespSp	ec Max	46.924943	3.569E-07	0.314482	4.9E-06	0.001342	2.069E-
	6	4	DY	LinRespSp	ec Max	7.701E-08	46.924943	0.314482	0.001342	4.899E-06	1.318E-
	8	0	DX	LinRespSp	ec Max	52.42229	7.322E-07	0.321601	5.064E-06	0.000982	2.77E-
	8	0	DY	LinRespSp	ec Max	5.643E-07	52.42229	0.321601	0.000982	5.065E-06	4.444E-

Gambar.2.47. Tabel Joint Displacement

Berikut contoh perhitungan simpangan di lantai atap arah-x :

= $30,3303 \text{ mm} < 100 \text{ mm} \rightarrow \text{OK}$ (memenuhi syarat)

Lantai	Joint	H _{SX}	δx	$\Delta_{\mathbf{X}}$	∆a (ijin)	Keterangan
		(mm)	(mm)	(mm)	(mm)	
Atap	80	4000	52.4223	30.2354	100	Aman
5	64	4000	46.9249	50.7105	100	Aman
4	48	4000	37.7048	71.5571	100	Aman
3	23	4000	24.6945	81.8425	100	Aman
2	16	4000	9.8140	53.9771	100	Aman

Tabel.2.3. Simpangan lantai arah $- x (\Delta x)$

Lantai	Joint	H _{SX}	δy	Δ_{y}	Δ _a (ijin)	Keterangan
		(mm)	(mm)	(mm)	(mm)	
Atap	80	4000	52.4223	30.2354	100	Aman
5	64	4000	46.9249	50.7105	100	Aman
4	48	4000	37.7048	71.5571	100	Aman
3	23	4000	24.6945	81.8425	100	Aman
2	16	4000	9.8140	53.9771	100	Aman

Tabel.2.4. Simpangan lantai arah – y (Δ y)

Berikut gambar diagram simpangan antar lantai (Story Drift)

Gambar2.48. Simpangan lantai (Story drift)

Note : Bila model struktur tidak memenuhi syarat, coba perbesar dimensi balok atau kolom dibeberapa tempat.

Apabila semua pemeriksaan sudah terpenuhi maka komponen struktur (balok, kolom, dan pelat) dari model sudah siap dianalisis.

12. Desain Penulangan Element Struktural

a. Peraturan yang Digunakan

Berdasarkan SNI 2847 : 2019 Pasal 9.3, kekuatan desain yang disediakan oleh suatu komponen struktur, sambungannya dengan komponen strukturr lain, dan penampangnya, sehubungan dengan lentur, beban normal, geser, dan torsi, harus diambil sebesar kekuatan nominal dihitung sesuai dengan persyaratan dan asumsi daristandar yang dikalikan dengan faktor reduksi kekuatan ϕ .

- = ACI 318-14 (SNI Beton 1. Design Code 2847 : 2019) 2. Seismic Design Category = D 3. Design System Sds = 0,6919 gPhi (Tension Controlled) = 0.904. 5. Phi (Compression Controlled Tied) = 0,65Phi (Compression Controlled Spiral) 6. = 0,757. Phi (Shear and/or Torsion) 0.75 8. Phi (Shear Seismic) = 0.6
- 9. Phi (Joint Shear)

Cara input nilai faktor reduksi kekuatan ini pada SAP2000 adalah klik menu Design –Concrete frame view/revise preferences.

= 0,85

1 Der 2 Mul 3 Nur 4 Nur 5 Cor 6 Sei	em sign Code Iti-Response Case Design mber of Interaction Curves	ACI 318-14 Envelopes	"C", "D", "E" or "F".
1 Det 2 Mul 3 Nui 4 Nui 5 Cor 6 Sei	sign Code Iti-Response Case Design mber of Interaction Curves	ACI 318-14 Envelopes	
2 Mu 3 Nu 4 Nu 5 Co 6 Sei	lti-Response Case Design mber of Interaction Curves	Envelopes	
3 Nur 4 Nur 5 Cor 6 Sei	mber of Interaction Curves		
4 Nur 5 Cor 6 Sei		24	
5 Cor 6 Sei	mber of Interaction Points	11	
6 Sei	nsider Minimum Eccentricity?	Yes	
	ismic Design Category	D	
7 De:	sign System Rho	1.	
8 Des	sign System Sds	0.6919	
9 Phi	(Tension Controlled)	0.9	
10 Phi	(Compression Controlled Tied)	0.65	
11 Phi	(Compression Controlled Spiral)	0.75	
12 Phi	(Shear and/or Torsion)	0.75	
13 Phi	(Shear Seismic)	0.6	
14 Phi	(Joint Shear)	0.85	
15 Pat	ttern Live Load Factor	0.75	
16 Util	ization Factor Limit	0.95	
			Explanation of Color Coding for Values Blue: Default Value Black: Not a Default Value
			Diack. Not a Default Value
All Ib	ems Selected Items	All Items Selected Items	Red: Value that has changed during the current session

Gambar. 2.49. Penyesuaian faktor reduksi sesuai SNI beton 2847-2019

Pendefinisian sistem SRPMK pada SAP2000 dilakukan dengan cara Select – Select – Properties – Frame Section pilih elemen balok dan kolom kemudian Design – Concrete Frame Design – Overwrites pada option Farming Type pilih Sway Special.

Gambar.2.50. Pendefenisian SRPMK balok dan kolom

Tahap awal concrete frame design adalah masukan kombinasi masukan kombinasi design dengan cara klik menu *Design – Concrete Frame Design – Select Design Combo* pilih Comb 1 s/d comb 18 dan klik *Add*. Lalu *uncek* pada option *Automatically Generate Code* pada sesuai ditunjukan pada gambar berikut.

Load Combination Type	Strength	~ *
Select Load Combinations		
List of Load Combinations	Design Load Co	ombinations
	COMB1 COMB10 COMB10 COMB11 COMB12 COMB12 COMB14 COMB14 COMB15 COMB16	Ţ,
utomatic Design Load Combinati Automatically Generate Code Set Automatic	Based Design Load Combinat	ions a

Gambar.2.51. Pilihan kombinasi desain

2.2.3 SAP (Structural Analysis Program)

Seiring dengan perkembangan teknologi informasi global sekarang ini, maka secara otomatis tuntutan penggunaan teknologi tersebut mutlak diperlukan, berbagai dampak perkembangan teknologi adalah munculnya sebagai *Software Under Window*, baik pada bidang desain grafis maupun bidang rancang bangunan, adapun salah satu wujud teknologi pada bidang rancang bangunan sekarang adalah SAP (*Structural Analysis Program*) yang mana SAP ini adalah program yang berorientasi obyek (*Object Oriented Programing*).

Program SAP merupakan program yang berasal dari Univercity of California at Barkeley, USA sekitar tahun 1970, dari tahun ketahun SAP mengalami perkembangan yang cukup berarti, dari SAP yang Under DOS hingga sekarang sudah sampai ke SAP yang Under Window, maka untuk melayani keperluan komersial dari program SAP pada tahun dibentuklah perusahaan komputer yang diberi nama, CSI (Computer and Structure, Inc).

Program SAP2000 ini memiliki beberapa kelebihan, terutama dalam perancangan struktur baja dan beton, dalam perancangan struktur baja SAP2000 dapat merancang elemen struktur dengan menggunakan profil baja yang optimal an ekonomis, sehingga dalam penggunaannya tidak perlu menentukan elemen awal dengan profil pilihannya, tetapi cukup memberikan data profil dari database yang ada pada SAP2000, dan ini hanya berlaku untuk perancangan struktur baja, sedangkan untuk perancangan struktur beton kita tetap harus menentukan elemen awal sebagai asumsi awal perancangan yang kemudian nanti diperoleh luas tulangan keseluruhannya.

BAB III

METODOLOGI PENELITIAN

3.1 Lokasi Penelitian

Penulis melakukan penelitian yang di laksanakan pada gedung hotel parai kota kawahlunto.

Gambar 3.1 Lokasi Penelitian. Sumber : Google Earth (2023)

3.2 Data Penelitian

3.2.1 Data Umum Proyek

Untuk proyek pembangunan gedung hotel parai kota sawahlunto dengan data sebagai berikut:

A Marine Marine

Nama Proyek	: Pembangunan dan peningkatan sarana dan prasarana				
	aparatur pemerintah dan perencanaan teknis 2010.				
Lokasi Proyek	: Jl. Bagindo aziz chan, kec. lembah segar, kota sawahlunto.				
Nama Pekerjaan	: Pembangunan hotel dibelakang wisma 1.				
Perencana	: Bidang bina program dan teknis dinas pekerjaan umum – kota sawahlunto, Jalan simpang, kolok mudik nomor 1, kecamatan barangin kota sawahlunto.				
Program	: perencanaan teknis dan penyusun dokumen perencanaan				

3.2.2 Data Teknis Proyek

1. Pondasi

Pondasi yang dipakai adalah pondasi bore pile, pondasi bore pile adlah pondasi tiang yang pemasangannya dilakukan pengeboran tanah terlebih dahulu. Dengan kedalaman pondasi 7,20 meter.

Kolom yang digunakan terdiri atas 4 tipe dengan jenis yang digunakan sebagagai berikut:

Tabel 3.1 kolom

SIMBOL	KETERANGAN		
	KOLOM 45X45 CM		
	KOLOM 30X30 CM		
	KOLOM 15X30 CM		
	KOLOM 15X20 CM		
-	KOLOM 15X15 XM		

Sumber: Data Proyek (2010)

3. Balok

Balok yang digunakan terdiri atas 4 tipe dengan jenis yang digunakan sebagai berikut:

Pelat lantai merupakan salah satu bagian struktur pada gedung dan salah satu struktur bangunan dengan bidang yang terbilang tipis:

Gambar 3.4 detail pelat lantai Sumber: Data Proyek (2010)

3.3 Bagan Alir Penelitian

Proses analisis yang dilakukan, penulis buat dalam bentuk bagan alir seperti di bawah ini.

BAB IV

ANALISA DAN PEMBAHASAN

4.1 Preliminary Desain

a. Kolom dan Balok

No	Input Data	Simbol	Panjang	Satuan
		L1	4000	mm
1	Balok 20/30	L2	4000	mm
		L3	4000	mm
2		LI	4000	mm
_	Balok 30/50	L2	4000	mm
	C.	L3	4000	mm
	LE LE	H1	3200	mm
3	Kolom 45/45	H2	3200	mm
		H3	3200	mm
4	Mutu Beton	K	250	Kg/cm ²
	20/	K	250	Kg/cm ²
5	Mutu baja	TEBAD	240	Мра
			400	Mpa

4.2 Menggambar Model Struktur

Permodelan 3D menggunakan SAP 2000 Versi 14 dikerjakan dengan data sekunder dan *shop drawing* hotel parai kota sawahlunto. langkah awal permodelan adalah dengan mendefenisikan jenis penampang pada data tersebut.
4.3 Merencanakan Material Struktur

Untuk melakukan perencanaan material struktur, maka klik *Define-materials*, klik *add new* material maka pilih material *type* pilih *Concrete/Rebar*, maka mulailah untuk menginput data sesuai gambar yang ada.

Material Property Data	
– General Data	
Material Name and Display Color	BETON BALOK 19.5 MPA
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 24	KN, m, C 💌
Mass per Unit Volume 2.4473	
Isotropic Property Data	
Modulus of Elasticity, E	20754.63803587
Poisson's Ratio, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	8647.7658
Other Properties for Concrete Materials	
Specified Concrete Compressive Strengt	n, f'c 19500.
Lightweight Concrete	
Shear Strength Reduction Factor	
Switch To Advanced Property Display	
<u> </u>	Cancel

Gambar 4.1. . Menginput material beton balok.

Material Property Data

General Data	
Material Name and Display Color	BETON KOLOM 19.7 MPA
Material Type	Concrete
Material Notes	Modify/Show Notes
Weight and Mass	Units
Weight per Unit Volume 24.	KN, m, C 💌
Mass per Unit Volume 2.4473	
Isotropic Property Data	
Modulus of Elasticity, E	20860801
Poisson's Ratio, U	0.2
Coefficient of Thermal Expansion, A	9.900E-06
Shear Modulus, G	8692000.
Other Properties for Concrete Materials	
Specified Concrete Compressive Strengt	th, f'c 19700.
Lightweight Concrete	
Shear Strength Reduction Factor	
Switch To Advanced Property Display	
ОК	Cancel
	XXII

Gambar. 4.2. Menginput material beton kolom.

4.4 Membuat Penampang Struktur

Merencanakan penampang struktur sesuai dengan spesifikasi teknis yang sudah di terapkan dilapangan, dan yang sudah diaplikaiskan pada gedung hotel tersebut. hal ini dilakukan karena presentase penampang efektif moment inersia pada beton < 100% berdasarkan SNI2847 : 2019 pasal 6.6.3.1.1. pada torsi juga direduksi sebesar 25% untuk menyeimbangkan nilai reduksi terhadap inersia elemen struktur.

TERA

4.4.1 Balok

	Section Name	BALOK	30/50
	Section Notes		Modify/Show Notes
	Properties Section Properties	Property Modifiers Set Modifiers	Material + BETON BALOK 19.! -
	Dimensions Depth (t3) Width (t2)	0.5	3 <
			Display Color
	Concrete Reinforcen	nent	
	Gambar 4.3	. Penampang struk	tur balok 30/50.
.2 Kol	Gambar 4.3 om	. Penampang struk	ctur balok 30/50.
.2 Kol	Gambar 4.3 om ectangular Section Section Name	. Penampang struk	45/45
.2 Kol	Gambar 4.3 om ectangular Section Section Name Section Notes	Penampang struk	45/45 Modify/Show Notes
.2 Kol	Gambar 4.3 om ectangular Section Section Name Section Notes Properties Section Properties	. Penampang struk	45/45 Modify/Show Notes Material + BETON KOLOM 19. •
.2 Kol	Gambar 4.3 om ectangular Section Section Name Section Notes Properties Section Properties Dimensions Depth (13) Width (12)	. Penampang struk	45/45 Modify/Show Notes Material + BETON KOLOM 19. •
.2 Kol	Gambar 4.3 om ectangular Section Section Name Section Notes Properties Section Properties Dimensions Depth (13) Width (12)	. Penampang struk	tur balok 30/50. 45/45 Modify/Show Notes Material + BETON KOLOM 19. • Display Color

Gambar 4.4. Penampang struktur kolom 45/45.

4.4.3 Pelat Lantai

ell Section Data	
Section Name	PELAT LANTAI
Section Notes	Modify/Show
	Display Color
Туре	
Shell - Thin	
Shell - Thick	
Plate - Thin	
C Plate Thick	
C Membrane	
Modify/S	how Laver Definition
Material	
Material Name	+ BETON KOLOM 19.7 N ▼
Material Angle	0.
Thickness	
Membrane	0.14
Bending	0.14
Set Modifiers	Thermal Properties
ОК	Cancel
Gambar. 4.5	Shell Section data.
perty/Stiffness Modificatio	on Factors
Property/Stiffness Modifiers I	for Analysis
Membrane f11 Modifier	0.25
Membrane f22 Modifier	0.25
Membrane f12 Modifier	0.25
Bending m11 Modifier	0.25

Gambar.4.6. Input Property/Stiffness modification pelat.

(.....ÖК.....)

Bending m22 Modifier

Bending m12 Modifier

Shear v13 Modifier

Shear v23 Modifier

Mass Modifier

Weight Modifier

0.25

0.25

1

1

1

1

Cancel

4.5 Menggambar Model Elemen Struktur

Permodelan struktur Gedung dilakukan dengan 3D dengan memodelkan semua struktur balok, pelat, kolom.

4.5.1 Menggambar elemen balok

Gambar 4.7. Penggambaran struktur balok.

4.5.2 Menggambar elemen kolom

4.5.3 Menggambar elemen pelat

Gambar 4.9. Penggambaran struktur pelat.

4.6 Menetapkan Jenis Perletakan/Restraint

Gambar 4.11. Devide Pelat Lantai dan Atap.

4.8 Mengaplikasikan Pembebanan

Beban – beban yang ada beberapa macam diaplikasikan pada SAP 2000 sesuai dengan jenis beban yang akan diinput pada langkah yang akan dilakukan.

4.8.1 Mendefenisikan Jenis Beban

Define Load Patterns					
Load Patterns	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Click To: Add New Load Pattern
DEAD LOAD	DEAD	• 1		-	Modify Load Pattern
DEAD LOAD SUPER DEAD LOAD LIVE LOAD SX SY	DEAD SUPER DEAD LIVE QUAKE QUAKE	1 0 0 0	IBC 2006 IBC 2006	 ▲ ▲ 	Modify Lateral Load Pattern Delete Load Pattern Show Load Pattern Notes
					Cancel

Gambar 4.12. Jenis beban yang bekerja.

4.8.2 Beban Mati pada Pelat Lantai

Tabel 4.1. Beban mati pada Gedung hotel.

No.	Material	Berat
1.	Pasir Setebal 1cm	0,16 kN/m ²
2.	Spesi Setebal 3cm	0,66 kN /m ²
3.	Keramik Setebal 1cm	0,22 K kN m ²
4.	Platfon dan Pengantung	0,2 kN /m ²
5.	Instalasi ME	0,25 kN /m ²
Tota	l Beban Mati pada Plat Lantai	1,49 kN /m ²

4.8.3 Beban Mati Pada Pelat Atap

No	Material	Berat
1.	Berat pelat atap	0,28 kN/m ²
2.	Beban plafon menggantung	0,2 kN/m ²
3.	Berat instalasi ME	0,25 kN/m ²
Tota	l beban mati pada pelat lantai	0,73 kN/m ²

Tabel 4.2.	Beban	mati	pada	pelat	atap.

4.8.4 Beban Mati Pada Balok

Frame Distributed Loads	
Load Pattern Name	Units
	▼
Load Type and Direction	Options
Forces C Moments	 Add to Existing Loads
Coord Sys GLOBAL	 Replace Existing Loads
Direction Gravity	C Delete Existing Loads
Trapezoidal Loads 1. 2.	3. 4.
Distance 0. 0.25	0.75 1.
Load 0. 0.	0. 0.
Relative Distance from End-I	C Absolute Distance from End-I
Uniform Load	
Load 6.75	OK Cancel

Gambar 4.13. Input beban mati pada balok.

4.8.5 Beban Hidup

Load Pattern Name	Units
+ LIVE LOAD	▼ Kgf, m, C ▼
Uniform Load	Options
Load 2.5	 Add to Existing Loads
Coord System GLOBAL	Replace Existing Loads
Direction Gravity -	C Delete Existing Loads

Gambar 4.14. Distribusi beban hidup pada Gedung hotel.

4.9 Mengaplikasikan Beban Gempa UHA Pada Langkah ini diperintahkan untuk menginput beban gempa pada SAP 2000 sesuai dengan data gempa pada Lokasi penelitiaan tersebut.

Load Pattern Name	Туре	Self Weight Multiplier	Auto Lateral Load Pattern		Add New Load Pattern
SX	QUAKE	• 0	IBC 2006 🔹		Modify Load Pattern
DEAD LOAD SUPER DEAD LOAD	DEAD SUPER DEAD	1		•	Modify Lateral Load Pattern
LIVE LUAD		0	IBC 2006		Delete Load Pattern
SY	QUAKE	0	IBC 2006	•	Show Load Pattern Notes.

Gambar 4.15. Define Gempa Statik Ekivalen.

IBC 2006 Seismic Load Pattern

Load Direction and Diaphragm Eccentricity	Seismic Coefficients
 Global X Direction 	○ Ss and S1 from USGS - by Lat./Long.
C Global Y Direction	C Ss and S1 from USGS - by Zip Code
Ecc. Ratio (All Diaph.)	(• Ss and ST User Specified
Override Diaph. Eccen. Override	Site Longitude (degrees)
Time Period	Site Zip Code (5-Digits)
C Approx. Period Ct (ft), x =	0.2 Sec Spectral Accel, Ss 1.299
C Program Calc Ct (ft), x =	1 Sec Spectral Accel, S1 0.6081
User Defined T = 1.	Long-Period Transition Period 8.
Lateral Load Elevation Bange	
Program Calculated	Site Class D 🗸
C User Specified Reset Defaults	Site Coefficient, Fa 1.
MaxZ	Site Coefficient, Fv 1.5
Min Z	
Frature	Calculated Coefficients
Pactors Besponse Modification B	SDS = (2/3) * Fa * Ss U.866
Sustem Querekeneth Omena	SD1 = (2/3) * Fv * S1 [0.6081
System Overstrength, Omega JS.	Update Data
Deflection Amplification, Cd [5.5	
Occupancy Importance, I 1. Gambar 4.16. Penginput	ок <u>Cance</u> tan beban gempa arah X.
Occupancy Importance, I Gambar 4.16. Penginput 006 Seismic Load Pattern	OK Cancel
Occupancy Importance, I Gambar 4.16. Penginput Godó Seismic Load Pattern .oad Direction and Diaphragm Eccentricity	OK Cancel
Occupancy Importance, I Gambar 4.16. Penginput Gambar 5.16. Construction Global × Direction	DK Cancel tan beban gempa arah X.
Cocupancy Importance, I	DK Cancel tan beban gempa arah X.
Occupancy Importance, I Gambar 4.16. Penginput Gambar 4.16. Penginput Code Seismic Load Pattern Code Direction and Diaphragm Eccentricity Global X Direction Code Code Code Code Code Code Code Code	DK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) ?
Cocupancy Importance, I	OK
Occupancy Importance, I Gambar 4.16. Penginput Gambar 4.16. Penginput Coold Seismic Load Pattern Coad Direction and Diaphragm Eccentricity Global X Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override	OK
Occupancy Importance, I 1. Gambar 4.16. Penginput 0006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity C Global X Direction C Global Y Direction Ecc. Ratio (All Diaph.) Dverride Diaph. Eccen. Override	DK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat. /Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 user Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss
Occupancy Importance, I 1. Gambar 4.16. Penginput 006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Period C Approx. Period Ct (ft), x = C Program Calo	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1
Occupancy Importance, I 1. Gambar 4.16. Penginput code Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Time Period C Approx. Period Ct (ft), x = C Hore Defined Iter Defined	OK Cancel. tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period
Occupancy Importance, I 1. Gambar 4.16. Penginput Code Seismic Load Pattern coad Direction and Diaphragm Eccentricity C Global X Direction C Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Time Period C Approx. Period Ct (ft), x = C Program Calc Ct (ft), x = C User Defined T = 1.	DK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Site Latitude (degrees) ? Site Longitude (degrees) ? Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period
Occupancy Importance, I 1. Gambar 4.16. Penginput 006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity C Global X Direction © Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override C Approx. Period Ct (ft), x = C Program Calc Ct (ft), x = C User Defined T = .ateral Load Elevation Range	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period Site Class
Occupancy Importance, I 1. Gambar 4.16. Penginput 2006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction © Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override Time Period C Approx. Period Ct (ft), x = Program Calc Ct (ft), x = Image: User Defined T = 1. .ateral Load Elevation Range Program Calculated User Specified Reset Defaults	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Class D Site Coefficient, Fa
Occupancy Importance, I 1. Gambar 4.16. Penginput Code Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) 0.05 Override Diaph. Eccen. Override Diaph. Eccen. Override Imme Period C Approx. Period Ct (ft), x = Program Calc Ct (ft), x = Override User Defined T = Immer Period Ct (ft), x = Program Calc Ct (ft), x = Override Immer Period C Approx. Period Ct (ft), x = Override Immer Period C Approx. Period Ct (ft), x = Immer Period T = User Defined T = Max Z	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) OL2 Sec Spectral Accel, Ss 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period Site Class Site Coefficient, Fa Site Coefficient, Fv
Occupancy Importance, I 1. Gambar 4.16. Penginput CO06 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override Time Period C Approx. Period Ct (ft), x = Program Calc Ct (ft), x = • User Defined T = 1. .ateral Load Elevation Range • Program Calculated Ouser Specified Max Z Min Z	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Coefficient, Fa
Occupancy Importance, I 1. Gambar 4.16. Penginput Code Seismic Load Pattern .oad Direction and Diaphragm Eccentricity C Global X Direction Image: Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override Image: C Approx. Period Ct (ft), x = Image: C Program Calc Image: C Program Calculated C User Specified Max Z Min Z	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Class D Site Coefficient, Fa Site Coefficient, Fv Site Coefficient, Fa Site Coefficient
Decupancy Importance, I 1. Gambar 4.16. Penginput Coold Seismic Load Pattern .oad Direction and Diaphragm Eccentricity C Global X Direction © Global X Direction © Global Y Direction Ecc. Ratio (All Diaph.) 0.05 Override Diaph. Eccen. Override Time Period Ct (ft), x = © Program Calc Ct (ft), x = © User Defined T = 1. .ateral Load Elevation Range © Program Calculated Reset Defaults Max Z Min Z Min Z Stactors Response Modification, R 8.	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat /Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Class D Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient S SDS = (2/3) * Fa * Ss 0.866
Decupancy Importance, I 1. Gambar 4.16. Penginput Code Seismic Load Pattern © Global X Direction 0.05 Coverride Mattern © Coverride Diaph. Eccen. 0verride Override Diaph. Eccen. 0verride Override Diaph. Eccen. 0verride Override Diaph. Eccen. 0verride Override Load Elevation Range T = 1. .ateral Load Elevation Range Reset Defaults Max Z Min Z Min Z Vactors Response Modification, R 8. System Overstrength, Omega	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period Site Class D Site Coefficient, Fa Site 1= (2/3) * Fa * Ss 0.6081
Occupancy Importance, I 1. Gambar 4.16. Penginput 2006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity C Global X Direction @ Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override Override Diaph. Eccen. Override Override Diaph. Eccen. Override Override Diaph. Eccen. Override Override Diaph. Eccen. Override Diaph. Eccen. Override Override Diaph. Eccen. Override Override Override Diaph. Eccen. Override Override Diaph. Eccen. Override Override Cl (ft), x = • User Defined T = 1. ateral Load Elevation Range • Program Calculated • User Specified Reset Defaults Min Z Min Z System Overstrength, Omega 3. Deflection Amplification, Cd <	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat./Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Coefficient, Fa Site Coefficient, Fv 1.5 Calculated Coefficients SDS = (2/3) * Fa * Ss 0.866 SD1 = (2/3) * Fv * S1 Update Data
Occupancy Importance, I 1. Gambar 4.16. Penginput 2006 Seismic Load Pattern .oad Direction and Diaphragm Eccentricity Global X Direction Global Y Direction Ecc. Ratio (All Diaph.) Override Diaph. Eccen. Override Diaph. Eccen. Override Diaph. Eccen. Override Time Period C Approx. Period Ct (ft), x = O Verride Diaph. Eccen. Override Override Override <tr< td=""><td>OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat /Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fv 1.5 Calculated Coefficients SDS = (2/3) * Fa * Ss 0.6081 Update Data</td></tr<>	OK Cancel tan beban gempa arah X. Seismic Coefficients Ss and S1 from USGS - by Lat /Long. Ss and S1 from USGS - by Zip Code Ss and S1 from USGS - by Zip Code Ss and S1 User Specified Site Latitude (degrees) Site Longitude (degrees) Site Zip Code (5-Digits) 0.2 Sec Spectral Accel, Ss 1.299 1 Sec Spectral Accel, S1 0.6081 Long-Period Transition Period 8. Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fv 1.5 Calculated Coefficients SDS = (2/3) * Fa * Ss 0.6081 Update Data

Gambar 4.17. Penginputan beban gempa arah Y.

4.9.1 Gempa Dinamik Respon Spektrum

Cancel Real Constraint of the second and the s	Function Name		61		Function Damping Ra
Parameters C Sar ad S1 Itom USGS - by Lat /Long C Sar ad S1 Itom USGS - by Lat /Long C Sar ad S1 User Specified Sate Latitude (degrees) 7 Site Conglude (degrees) 8	Function Name	JHOTELFAN			10.05
C Sa add S1 from USUS - by L2A Long, S and S1 functions - by L2A Long, S and S1 Long, Parison - by L2A Long, S and Long, S and L2A Long, S and Long, S and L2A Long, S and L2A Long, S and L2A Long, S and	Parameters		Define Function	1	
C Sa and S1 time USBS - ByZP Edde S sa and S1 time Specified Site LongNote (degree) Site LongNote (degree) Site LongNote (degree) Site LongNote (degree) Site Case Site C	C Ss and S1 from USGS - by Lat./L	.ong.	Period A	cceleration	
Star data (bigs specied genes) 7 Star data (bigsgees) 7 Sta	C Ss and S1 from USGS - by∠ip C	ode	0	2464	Add
Site Laikude (degrees) Site Long/Netiod (Geores) 2 See Spectral Accel, Si 1 2 See S	 Ss and S1 User Specified 		0.1404 0.3	3464 866	Modify
Site Longlude (degrees) 7 Site Zap Code (5Digit) 7 12 0 05056 Site Zap Code (5Digit) 7 12 0 05056 12 0 0 0505 12 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	Site Latitude (degrees) ?		0.7022 0.1	866	Dialata
Site Zip Code (5-Dipta) 2 1 Sec Spectral Accel, 51 1 Sec Spectral Combination 1 Sec Spe	Site Longitude (degrees)		1.2 0.9	5068	Delete
0.2 Sec Spectral Accel. S: 1 289 1 Sec Spectral Accel. S: 1 0.6081 LoopPeriod Transition Period 8 Site Coefficient, Fa 1 Site Coefficient, Fa 1 Site Coefficient, Fa 1 Site Coefficient, Fa 1 Calculated Values for Response Spectrum Curve 9056 SD = (2/3) * Fa * Si 0.866 SD = (2/3) * Fa * Si 0.6081 Convert to User Defined Display Graph OK Carcel Gambar 4, 18. Input parameter respon spektrum. I Gase Data - Response Spectrum Design. Modd Corbination © SRS © CQC GMC rt 1 © SRSS GMC rt 2 © Absolute Scale Factor © Absolute Scale Factor © Absolute Scale Factor © Absolute Scale Factor © NNC 1D Percent MODAL<	Site Zip Code (5-Digits)		1.6 0.3	4344 3801	
1 Sec Spectral Accel, S1 0.6001 Long-Period Transition Period 8 Site Class D Site Coefficient, Fa 1 Site Coefficient, Fa 1 Site Coefficient, Fa 5 SD = (2/3) * Fa * 58 0.6068 Convert to User Defined Display Graph (19407 - 0.3141) Cacudated Values for Response Spectrum Display Graph (19407 - 0.3141) Cacudated Values to Response Spectrum Display Graph (19407 - 0.3141) Cacudated Values Defined Display Graph (19407 - 0.3141) Cacudated Values Convert to User Defined Display Graph (19407 - 0.3141) Cacudated Values Convert to User Defined Display Graph (19407 - 0.3141) Cacudated Case Name Notes Response Spectrum Load Case Name Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacuda Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Case Name Notes Cacudated Values Spectrum Display Graph (19407 - 0.3141) Cacudated Case Name Notes Cacudated Parameters Noted Load Case Mame Function Scale Factor Add Modiy Deleter Display Graph (19407 - 0.3141) Cacudated Case Ut HOTEL PARA 1.2263 Add Modiy Deleter Display Graph (19407 - 0.3141) Cacudated Case Name Function Scale Factor Add Modiy Deleter Display Graphica Constant at 0.05 Modify/Show	0.2 Sec Spectral Accel, Ss	1.299	1.8 0.3	3378	
Function Graph Function Scale Factor Function	1 Sec Spectral Accel, S1	0.6081	12. 10.	3041	
Site Cless Site Coefficient, Fa Site Coefficient, Fa Site Coefficient, Fv SDS = [2/3] * Fa * Ss SDI = [2/3] * Fa * Ss SDI = [2/3] * Fa * Ss SDI = [2/3] *	Long-Period Transition Period	8.	Function Graph		
Sie Class Sie Coefficient, Fa Sie Coefficient, Fa Sie Coefficient, Fv Caculated Values for Response Spectrum Curve SDS = (2/3) * Fa * Ss SD1 = (2/3) * Fa * Ss SD2 = (2/3) * Fa					
Site Coefficient, Fa Site Coefficient, Fv SDS = (2/3)*Fa*Sa SDI = (2/3)*Fa*Sa SDI = (2/3)*Fa*Sa Convert to User Defined Convert to User Defined Convert to User Defined Display Graph (1.9407, 0.3141) OK Cancel Display Graph Cancel Display Graph Cancel US Contant at 0.05 Modify/Show	Site Class	D -			
Site Coefficient, Fv 1.5 Calculated Values for Response Spectrum Curve SDS = [2/3] * For * Ss 0.866 SDI = [2/3] * For * S1 0.8081 Convert to User Defined Display Graph (1.9407 , 0.3141) Carolel Cambar 4, 18. Input parameter respon spektrum. I Case Data - Response Spectrum Load Case Name Modify/Show Case Data - Response Spectrum Load Case Name Set Def Name Modify/Show Case Data - Response Spectrum Load Case Name Set Def Name Modify/Show Case Data - Response Spectrum Load Case Name Set Def Name Modify/Show Case Case Spectrum Set Def Name Modify/Show Cade Case Type Response Spectrum Set Def Name Set Def Name Set Def Name Set Difference	Site Coefficient, Fa	1.			
Calculated Values for Response Spectrum Curve SDS = (2/3) * Fa * Ss 0.866 SD1 = (2/3) * Fv * S1 0.6081 Convert to User Defined Display Graph (1.9407 , 0.3141) Cancel Gambar 4, 18. Input parameter respon spektrum. Case Data - Response Spectrum Load Case Name Modily/Show Case Data - Response Spectrum Load Case Name Modily/Show Modal Combination © CDC GMC rt 1. © SRSS GMC r2 0. © Absolute Periodic + Rigid Type SRSS ♥ © Absolute Sum Modal Load Case Use Modes from this Modal Load Case MODAL ♥ Load Name Function Scale Factor Accel UI ♥ HOTEL PAR 1.2263 Add Modily Delete Show Advanced Load Parameters Diter Parameters Modal Damping Constant at 0.05 Modifiv/Show OK	Site Coefficient, Fv	1.5			
SDS = [2/3] * Fa * 5s SD1 = [2/3] * Fa * 5s Convert to User Defined Display Braph (1.9407 , 0.3141) C Cambar 4, 18. Input parameter respon spektrum. Case Data - Response Spectrum Case Data - Response Spectrum Case Data - Response Spectrum Coad Case Name Notes Case Data - Response Spectrum Coad Case Name Notes Coad Case Name Coad Case Notes Coad Case Name Coad Case Notes Coad Case Notes Coad Case Name Coad Case Notes Coad Case Coad Case	Calculated Values for Besponse Spe	ctrum Curve			
SD1 = (2/3) * Fv * S1 0.6081 Convert to User Defined Display Graph (1.9407 , 0.3141) Camber 4, 18, Input parameter respon spektrum. Camber 4, 18, Input parameter respon spektrum. Camber 4, 18, Input parameter respon spektrum. Camber 4, 18, Input parameter respon spektrum. Case Data - Response Spectrum Cod Case Name Modify/Show Case Data - Response Spectrum Design. Modal Combination © CDC GMC r1 1. © SRSS © Absolute © SRSS © Absolute © SRSS © Mode Factor Modal Load Case Use Modes from this Modal Load Case MODAL © Show Advanced Load Parameters Dither Parameters Dither Parameters Modal Damping Constant at 0.05 Modify/Show	SDS = (2/3) × Es × So	0.866			
SUITE(2/3) FV-S1 poole Convert to User Defined Display Graph (1.9407 , 0.3141) OK Cancel Gambar 4, 18. Input parameter respon spektrum. I Case Data - Response Spectrum coad Case Name Modify/Show DX Set Def Name Modal Combination © SRSS GMC GMC fr 1 C GMC Periodic + Rigid Type SRSS GMC fr 2 C MC Notes Directional Combination © SRSS C GMC Periodic + Rigid Type Scale Factor Scale Factor Oxade Sam MODAL Modal Load Case MODAL Use Modes from this Modal Load Case MODAL Use Modes from this Modal Load Case MODAL Load Type Load Name Function Accel U1 HOTEL PAR 1 12263 Accel U1 HOTEL PARAI Delete Show Advanced Load Parameters Directores OK		0 6091			
Convert to User Defined Display Graph (1.9407 , 0.3141) CK Cancel Gambar 4, 18. Input parameter respon spektrum. Case Data - Response Spectrum .oad Case Name Modify/Show Parameter Modify/Show Modal Combination GMC fr 1 C SRSS GMC fr 2 C MC Periodic + Rigid Type SRSS • C MC Double Sum Directional Combination Modal Load Case MODAL • Set Def Name MODAL • C SRSS GMC from this Modal Load Case Use Modes from this Modal Load Case MODAL • Load Type Load Name Function Scale Factor Accel U1 HOTEL PARAI 12263 Add Modify Delete Show Advanced Load Parameters Dther Parameters Modify/Show OK	501 = (2/3) ^ FV ^ 51	0.0001			
OK Cancel Gambar 4.18: Input parameter respon spektrum. Case Data - Response Spectrum coad Case Name DX Set Def Name Modify/Show Case Data - Response Spectrum Dotad Combination © CQC GMC ft 1. © SRSS GMC f2 0. © Absolute Periodic + Rigid Type SRSS ▼ © MRC 10 Percent Ouble Sum Modal Load Case MODAL ▼ Use Modes from this Modal Load Case MODAL ▼ Load Type Load Name Function Scale Factor Accel U1 HOTEL PARA 12263 Acdd Modify/Show Delete Delete	Convert to User Define	ed	Display 0	àraph	(1.9407, 0.3141)
DX Set Def Name Modify/Show Response Spectrum Design. Modal Combination GMC f1 1. GSRSS GMC f2 0. Absolute GMC Periodic + Rigid Type Directional Combination (* SRSS C Absolute Scale Factor C NRC 10 Percent Ouble Sum MODAL Modal Load Case MODAL Use Modes from this Modal Load Case MODAL Load Type Load Name Function Scale Factor Accel U1 HOTEL PAR = 1.2263 Add Modify Show Advanced Load Parameters Modify/Show Uher Parameters Uher Parameters Modal Damping OK		ar 4.18. Inpu	it parameter r	espon spe	ktrum.
Modal Combination CQC GMC f1 1. SRSS GMC f2 0. Absolute Scale Factor GMC Periodic + Rigid Type SRSS Scale Factor Modal Load Case Use Modes from this Modal Load Case MODAL Load Type Load Name Function Scale Factor Accel HOTEL PARI 1.2263 Add Modify Delete Show Advanced Load Parameters Deter Parameters	Case Data - Response Spectr		otes	Load Case	ktrum.
CQC GMC fi 1. SRSS GMC f2 0. Absolute Periodic + Rigid Type SRSS ▼ MRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Load Case MODAL ▼ .coads Applied Load Type Load Name Function Scale Factor Accel U1 ▼ HOTEL PARAI 1.2263 Accel U1 ■ OTEL PARAI 1.2263 Accel U1 ■	Case Data - Response Spectr	um	otes Modify/Show	Load Case	Fype Spectrum Design
SRSS GMC f2 0. Absolute Periodic + Rigid Type SRSS ▼ GMC Periodic + Rigid Type SRSS ▼ NRC 10 Percent Double Sum Double Sum MODAL ▼ Modal Load Case MODAL ▼ Use Modes from this Modal Load Case MODAL ▼ Load Type Load Name Function Accel U1 ▼ HOTEL PARA 1.2263 Accel U1 HOTEL PARA 1.2263 Accel U1 HOTEL PARA 1.2263 Add Modify Delete Delete	Case Data - Response Spectro	um	otes Modify/Show	Load Case Response	Ktrum. Type Spectrum V Design Combination
CMC 12 0. Scale Factor CMC 10 Percent Scale Factor Ouble Sum Modal Load Case Wodal Load Case MODAL<▼	Case Data - Response Spectro	um	otes Modify/Show	Load Case Response Directional C © SRSS	Ktrum. Type Spectrum V Design Combination
○ GMC Periodic + Rigid Type SRSS ○ NRC 10 Percent ○ ○ Double Sum Modal Load Case MODAL Use Modes from this Modal Load Case MODAL Load Type Load Name Function Scale Factor Accel U1 ▲ Load Type Load Name Function Scale Factor Accel U1 ▲ HOTEL PAR ▼ 1.2263 Add ▲ Accel U1 HOTEL PAR ▼ 1.2263 ▲ Add Modify Delete Delete	Case Data - Response Spectro oad Case Name DX Se Modal Combination © CQC C SRSS	um	otes Modify/Show	Load Case Response Directional C SRSS Absolu	Ktrum. Type Spectrum V Design Combination
NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Load Case MODAL< ▼	Case Data - Response Spectro oad Case Name DX Se Modal Combination CQC CSRSS C Absolute	um t Def Name GMC f1 GMC f2	otes Modify/Show	Load Case Response Directional O SRSS Absolu	Type Spectrum V Design Combination ute
C Double Sum Modal Load Case Use Modes from this Modal Load Case .oads Applied Load Type Load Name Function Scale Factor Accel U1 HOTEL PAR 1.2263 Accel U1 HOTEL PAR ■ 1.2263 Accel U1 HOTEL PARAI 1.2263 Add Modify Delete Delete	Case Data - Response Spectro coad Case Name DX Se Modal Combination CQC C SRSS C Absolute C GMC	um t Def Name GMC f1 GMC f2 riodic + Rigid Type	otes Modify/Show 1. 0. SRSS 🗨	Load Case Response Directional O Scale	Type Spectrum V Design Combination Late Factor
Modal Load Case Use Modes from this Modal Load Case MODAL	Case Data - Response Spectro coad Case Name DX Se Modal Combination CQC CSRSS CAbsolute CGMC Pe CNRC 10 Percent	um t Def Name GMC f1 GMC f2 riodic + Rigid Type	otes Modify/Show 1. 0. SRSS 🗣	Load Case Response Directional O Scale	Type Spectrum v Design Combination ute Factor
Use Modes from this Modal Load Case MODAL .oads Applied Load Type Load Name Function Scale Factor Accel U1 HOTEL PAR 1.2263 Add Modify Delete Show Advanced Load Parameters Other Parameters Modal Damping Constant at 0.05 Modify/Show OK	Case Data - Response Spectro coad Case Name DX Se Modal Combination CQC CSRSS C Absolute C GMC Pe C NRC 10 Percent C Double Sum	GMC f1 GMC f2	I. 0. SRSS V	Load Case T Response Directional C © SRSS © Absolu Scale	Type Spectrum v Design Combination ute Factor
Load Type Load Name Function Scale Factor Accel U1 ▼ HOTEL PAR ▼ 1.2263 Accel U1 HOTEL PARAI 1.2263 Add Modify Delete Dther Parameters Modal Damping Constant at 0.05 Modify/Show	Case Data - Response Spectro coad Case Name DX Se Modal Combination CQC C SRSS C Absolute C GMC C NRC 10 Percent C Double Sum Modal Load Case	um t Def Name GMC f1 GMC f2 riodic + Rigid Type	otes Modify/Show 1. 0. SRSS	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum v Design Combination ute Factor
Load Type Load Name Function Scale Factor Accel U1 HOTEL PAR 1.2263 Accel U1 HOTEL PAR 1.2263 Accel U1 HOTEL PARAL 1.2263 Show Advanced Load Parameters Delete Delete Other Parameters OK	Case Data - Response Spectro orad Case Name DX Se Modal Combination CQC SRSS Absolute GMC Pe C NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Loa	t Def Name N GMC f1 GMC f1 GMC f2 riodic + Rigid Type	It parameter r Modify/Show	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum Design Combination ute Factor
Accel U1 HOTEL PAR 1 1.2263 Add Accel U1 HOTEL PARAI 1.2263 Add Modify Delete Delete Delete Show Advanced Load Parameters Delete Delete Delete Dther Parameters OK DK	Case Data - Response Spectro	d Case	IL parameter r	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum v Design Combination ute Factor
Accel U1 HOTEL PARAL 1.2263 Add Modify Delete Dther Parameters Modal Damping Constant at 0.05 Modify/Show	Case Data - Response Spectro orad Case Name DX Se Modal Combination CQC SRSS Absolute C SRSS Absolute C SRC Pe C NRC 10 Percent C Double Sum Modal Load Case Use Modes from this Modal Loa	t Def Name GMC f1 GMC f1 GMC f2 iodic + Rigid Type d Case Function	otes Modify/Show 1. 0. SRSS MODAL Scale Factor	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum <u>Design</u> Combination ute Factor
Modify Modify Delete Model Damping Constant at 0.05 Modify/Show	Case Data - Response Spectro Coad Case Name DX Se Modal Combination CQC SRSS Absolute GMC NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Loa	ar 4. 18. mpu um t Def Name GMC f1 GMC f2 iodic + Rigid Type d Case	IL parameter r Modify/Show 1. 0. SRSS MODAL Scale Factor 1.2263	Load Case Response Directional C SRSS Absolu Scale	Spectrum Spectrum Design Combination ute Factor
Show Advanced Load Parameters Dther Parameters Modal Damping Constant at 0.05 Modify/Show	Case Data - Response Spectro oad Case Name DX Se Modal Combination CQC SRSS Absolute GMC NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Loa Load Type Load Type Load Name Accel U1 Accel U1	GMC f1 GMC f2 riodic + Rigid Type	IL parameter r Modify/Show 1. 0. SRSS MODAL Scale Factor 1.2263 1.2263 1.2263	Load Case T Response Directional O Scale	Spectrum.
Show Advanced Load Parameters Dther Parameters Modal Damping Constant at 0.05 Modify/Show OK	Case Data - Response Spectro oad Case Name DX Se Modal Combination CQC SRSS Absolute GMC NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Loa Load Type Load Type Load Name Accel U1 Accel U1	GMC f1 GMC f2 riodic + Rigid Type	IL parameter r Modify/Show 1. 0. SRSS MODAL Scale Factor 1.2263 1.2263 1.2263	Load Case T Response Directional O © SRSS © Absolu Scale	Spectrum.
Dther Parameters Modal Damping Constant at 0.05 Modifu/Show	Case Data - Response Spectronad Case Name DX Se Modal Combination CQC C SRSS Absolute C MC Pe C MRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Load Load Type Load Name Accel U1	d Case	IL parameter r Modify/Show 1. 0. SRSS Scale Factor 1.2263 1.2263	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum <u>Design</u> Combination ute Factor
Modal Damping Constant at 0.05 Modifu/Show OK	Case Data - Response Spectro .coad Case Name DX Se Modal Combination CQC CSRSS Absolute CASS Absolute CASS Absolute CORC CRC CORC	d Case	IL parameter r Modify/Show I. O. SRSS SRSS Scale Factor I.2263 1.2263	Load Case Response Directional C © SRSS © Absolu Scale	Type Spectrum <u>Design</u> Combination ute Factor
Mouar Damping Constant at 0.00 Mourity Show	Case Data - Response Spectro Load Case Name DX Se Modal Combination CQC SRSS Absolute GMC GMC McC NRC 10 Percent Double Sum Modal Load Case Use Modes from this Modal Loa Load Type Load Name Accel U1 Accel U1 Show Advanced Load Para	ar 4. 18. mpu	IL parameter r Modify/Show 1. 0. SRSS MODAL Scale Factor 1.2263 1.2263	Load Case Response Directional C Scale Absolu Scale	Spectrum Spectrum Design Combination ute Factor

Gambar 4.19. Respon *spektrum case* arah X.

	Load Case Type
DY Set Def Name Modity/Show	Response Spectrum 🗨 Design
Modal Combination	Directional Combination
	SBSS
O SBSS	C Absolute
GMC f2 0.	Scale Factor
C GMC Periodic + Rigid Type SRSS	,
O NBC 10 Percent	
C Double Sum	
Modal Load Case	
Use Modes from this Modal Load Case MODAL	I
,	4
Loads Applied	
Load Type Load Name Function Scale Factor	
Accel U2 VINIFRS 1.2263	
Accel U2 UNIFRS 1.2263	Add
	Markey 1
	Modiry
	Delete
Show Advanced Load Parameters	
Other Parameters	
Modal Damping Constant at 0.05 Mo	odify/Show OK
	Canad
	Lancel
	Cancer
5 V 2010	
Combor 1 20 Borron media	
Gambar 4.20. Respon <i>spektru</i>	um case arah Y.
Gambar 4.20. Respon <i>spektru</i>	um case arah Y.
Gambar 4.20. Respon <i>spektru</i> .2 Penentuan Masa Struktur	um case arah Y.
Gambar 4.20. Respon <i>spektru</i> .2 Penentuan Masa Struktur	um case arah Y.
Gambar 4.20. Respon <i>spektru</i> .2 Penentuan Masa Struktur Define Mass Source	um case arah Y.
Gambar 4.20. Respon <i>spektru</i> .2 Penentuan Masa Struktur Define Mass Source	um case arah Y.
Gambar 4.20. Respon <i>spektru</i> .2 Penentuan Masa Struktur Define Mass Source Mass Definition	um case arah Y.
Gambar 4.20, Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass	um case arah Y.
Gambar 4.20. Respon spektri .2 Penentuan Masa Struktur Define Mass Source Mass Definition © From Element and Additional Mass © From Loads	um case arah Y.
Gambar 4.20, Respon spektri .2 Penentuan Masa Struktur Define Mass Source Mass Definition © From Element and Additional Mass © From Loads © From Element and Additional Mass	ees sees and Loads
Gambar 4.20, Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition © From Element and Additional Mass © From Element and Additional Mass © From Element and Additional Mass	ees sees and Loads
Gambar 4.20, Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition C From Element and Additional Mass From Loads C From Element and Additional Mass Define Mass Multiplier for Loads Load	um case arah Y.
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier	um case arah Y.
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD 1.	um case arah Y.
Gambar 4.20, Respon spektru 2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Load Multiplier DEAD LOAD SUPER DEAD LOAD 1.	Lancer um case arah Y.
Gambar 4.20, Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD SUPER DEAD LOAD 1.	Lanter
Gambar 4.20, Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition Mass Definition From Element and Additional Mass From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD SUPER DEAD LOAD 1.	tes ses and Loads
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Element and Additional Mass From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD I. DEAD LOAD I.	tes ses and Loads
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD SUPER DEAD LOAD 1. DEAD LOAD 1.	tess ses and Loads Add Modify Delete
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD SUPER DEAD LOAD 1. 1.	tes ses and Loads Add Modify Delete
Cambar 4.20. Respon spektru 2.2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD I. SUPER DEAD LOAD 1.	tes ses and Loads
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD 1. SUPER DEAD LOAD 1. 1.	tes ees and Loads
Gambar 4.20. Respon spektru .2 Penentuan Masa Struktur Define Mass Source Mass Definition From Element and Additional Mass From Loads From Element and Additional Mass Define Mass Multiplier for Loads Load Multiplier DEAD LOAD 1 SUPER DEAD LOAD 1. 1.	tes ees and Loads

Gambar 4.21. Penentuan Masa Struktur

4.10 Menetapkan Lantai Tingak Sebagai Diafragma

Pada SNI Gempa 03 – 1726 – 2019 disimpulkan bahwa analisis struktur dipertimbangkan kekakuan relative diafragma dan elemen vertical system penahan gempa. Pelat lantai dan atap beton dapat berfungsi sebagai diafragma yang dapat menyumbangkan kekakuannya pada struktur Gedung Ketika beban lateral bekerja.

Diaphragm Constraint
Constraint Name DIAPH1_0.
Coordinate System GLOBAL
Constraint Axis
O X Axis O Auto
C Y Axis
○ Z Axis
Assign a different diaphragm constraint to each different selected Z level
Gambar 4.22. Input joint Constraint.
11 Kombinasi Beban Gempa

Berdasarkan SNI – 2847 : 2019 Pasal 5.3.1, kombinasi pembebanan terfaktor, yaitu sebagai berikut :

- A. Comb.1 = 1,4 DL + 1.4 SDL
- B. Comb.2 = 1,2 DL + 1,2 SDL + 1.6 LL
- C. Comb.3 = 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ex + 0,3 Ey
- D. Comb.4 = 1,34 DL + 1,34 SDL + 1,0 LL +1,0 Ex + 0,3 Ey
- E. Comb.5 = 1,34 DL + 1,34 SDL + 1,0 LL + 1,0 Ex + 0,3 Ey
- F. Comb.6 = 1,34 DL + 1,34 SDL + 1,0 LL +1,0 Ex + 0,3 Ey

coad combinations		CIER (B.
COMB1		Add New Combo
COMB2 COMB3 COMB4		Add Copy of Combo
COMB5 COMB5		Modify/Show Combo
COMB7 COMB8	•	Delete Combo
COMB9		
COMB11		Add Default Design Combos
COMB12		Convert Combos to Nonlinear Cases
COMB14 COMB15	·	
COMB16		OK
COMB17		Cancel

Gambar 4.23. Input beban kombinasi 3 dan envelope.

4.12 Pengecekan Perilaku Struktur

4.12.1 Pemeriksaan Jumlah Ragam

V	iew Format-F	ilter-Sort Sel	ect Options		_				
c /	As Noted				Mo	dal Participating	Mass Ratios		
	OutputCase Text	StepType Text	StepNum Unitless	Period Sec	UX Unitless	UY Unitless	UZ Unitless	SumUX Unitless	SumU Unitles
	MODAL	Mode	1	0.722416	3.13E-19	0.7843	1.935E-18	3.13E-19	0.784
	MODAL	Mode	2	0.624775	0	0	1.91E-20	3.131E-19	0.784
	MODAL	Mode	3	0.580037	0.8203	1.354E-15	5.116E-16	0.8203	0.784
	MODAL	Mode	4	0.237626	3.759E-17	0.1471	2.714E-13	0.8203	0.93
	MODAL	Mode	5	0.232611	5.099E-16	0.011	8.948E-13	0.8203	0.942
	MODAL	Mode	6	0.229443	1.306E-16	9.676E-16	8.681E-13	0.8203	0.942
	MODAL	Mode	7	0.223094	2.289E-16	0.00009329	1.093E-15	0.8203	0.94
	MODAL	Mode	8	0.21389	1.203E-14	1.387E-14	1.966E-13	0.8203	0.942
	MODAL	Mode	9	0.212058	2.832E-16	5.864E-16	1.384E-14	0.8203	0.942
	MODAL	Mode	10	0.211975	1.601E-14	8.412E-17	0.1209	0.8203	0.942
	MODAL	Mode	11	0.209647	0.017	4.067E-14	000000001004	0.8374	0.942
	MODAL	Mode	12	0.208951	0.1151	5.132E-15	00000000353	0.9524	0.942
	MODAL	Mode	13	0.20516	3.589E-15	4.697E-15	0.0092	0.9524	0.942
	MODAL	Mode	14	0.201891	5.004E-15	0.000003211	1.956E-13	0.9524	0.942
	MODAL	Mode	15	0.198511	0.000131	1.233E-13	000000001552	0.9526	0.942
	MODAL	Mode	16	0.189622	00000001607	2.956E-14	0.0023	0.9526	0.942
	MODAL	Mode	17	0.187915	1.511E-13	3.736E-14	8.828E-15	0.9526	0.942
	MODAL	Mode	18	0.178859	0.00001471	2.994E-13	3.82E-14	0.9526	0.942
	MODAL	Mode	19	0.173117	7.519E-13	0.0000003596	000000000113	0.9526	0.942
	MODAL	Mode	20	0.167124	2.155E-13	7.922E-15	0.000779	0.9526	0.942

Record: **I I I I I** of 25

Add Tables... Done

Gmabar4.24. Jumlah Partisipasi Masa Ratio.

4.12.2 Perbandingan Geser dasar Vstatik VS Vdinamik

Base Reactions

File View Format-Filter-Sort Select Options

Units: As Noted

Base Reactions

OutputCase Text	CaseType Text	StepType Text	GlobalFX Kip	GlobalFY Kip	GlobalFZ Kip	GlobalMX Kip-in	GlobalMY Kip-in	GlobalMZ Kip-in	
SX	LinStatic		-168.354	00000003826	-1.759E-13	00000006897	-46649.598	43894.43	
SY	LinStatic		00000005556	-168.354	9.504E-14	46649.598).00000001055	-108047.827	
DX	LinRespSpec	Max	195.279	0.0001869	0.0001011	0.071	52420.693	49973.151	
DY	LinRespSpec	Max	0.00001175	217.113	0.0001026	58461.952	0.061	136763.833	

Gambar 4.25. Output geser dasar.

4.12.3 Pemeriksaan Simpangan Antar Lantai

lext lext lext in in in Hadlar Hadlar 1 DX LinRespSpec Max 0.500246 0.0000001939 0.002126 0.000000148 0.00013 2 DX LinRespSpec Max 0.500246 0.000001939 0.002212 0.000000148 0.00000020 3 DX LinRespSpec Max 0.500246 0.0000001939 0.002126 0.000000148 0.00000020 3 DX LinRespSpec Max 0.500246 0.0000001939 0.002126 0.000000217 0.00000271 0.00000027 4 DX LinRespSpec Max 0.500246 0.0000001999 0.00174 0.00000029 0.00122 4 DY LinRespSpec Max 0.500246 0.0000001999 0.000222 0.000000161 0.00222 0.000000161 0.000222 0.00000161 0.00222 0.00000161 0.002261 0.0000000162 0.00124 0.000000162 0.00124 0.000000161 0.002687 0.000000161	Т		caserype	Stepiype	UI UI	UZ	03	B1	B. B.
1 DX LinRespSpec Max 0.300246 (0.00000133) 0.0012126 0.000000131 0.000131 0.000002131 1 DY LinRespSpec Max 0.00000001338 0.00163 0.002718 0.0000001468 0.00131 2 DY LinRespSpec Max 0.0000002371 0.90787 0.00163 0.002711 0000000201 3 DX LinRespSpec Max 0.500246 (0.000001939) 0.002126 0.00000315 0.00133 3 DY LinRespSpec Max 0.500246 (0.000001939) 0.00174 0.00000271 4 DX LinRespSpec Max 0.500246 (0.000001939) 0.00174 0.00000271 4 DY LinRespSpec Max 0.500246 (0.0000001939) 0.000222 0.000000137 0.00124 5 DX LinRespSpec Max 0.500246 (0.0000001939) 0.000222 0.000000137 0.00124 6 DY LinRespSpec Max 0.500246 (0.0000000192 0.0002687 0.000012			LinPeerSpee	Max	0.500246	10000001929	0.002126	n nonnonants	0.00122
1 D1 LinRespSpec Max 0.0000002371 0.000103 0.000210 0.0000001468 0.00113 2 DY LinRespSpec Max 0.0000002371 0.0000001939 0.0022126 0.00000001000 0.0000001000 3 DX LinRespSpec Max 0.0000002372 0.90787 0.00163 0.002718 0.00000027 4 DX LinRespSpec Max 0.500246 0.0000001999 0.000174 0.00000027 4 DX LinRespSpec Max 0.500246 0.0000001999 0.000174 0.00000027 4 DX LinRespSpec Max 0.500246 0.0000001999 0.000174 0.000000292 0.00122 5 DX LinRespSpec Max 0.500246 0.0000001962 0.002687 0.000000162 6 DY LinRespSpec Max 0.500246 0.00000001999 0.000174 0.000000392 0.0012 7 DX LinRespSpec Max 0.500246 0.0000001999 0.000174 0.00000392 0.0012 6 DY LinResp	1	DY	LinBespSpec	May	1 0000002388	0.90787	0.002120	0.0000000010	0.00132
2 DX LinRespSpec Max 0.3002371 0.90787 0.000000156 0.002701 00000000156 3 DX LinRespSpec Max 0.500246 0.000000139 0.002701 00000002372 4 DX LinRespSpec Max 0.500246 0.0000001999 0.00174 0.000000271 0.00000271 4 DX LinRespSpec Max 0.500246 0.0000001999 0.00174 0.00000027 4 DX LinRespSpec Max 0.500246 0.0000001999 0.000174 0.00000095 5 DX LinRespSpec Max 0.500246 0.0000001999 0.000222 0000000167 0.00124 5 DY LinRespSpec Max 0.500246 0.0000001999 0.000174 0.0000000167 6 DY LinRespSpec Max 0.500246 0.000000259 0.000174 0.000000392 0.00124 7 DX LinRespSpec Max 0.500246 0.00000178 0.0002687 0.0	2	DX	LinBespSpec	May	0.500246	1 0000001939	0.00103	0.002710	0.00000271
2 D1 LinRespSpec Max 0.0000002371 0.0000003136 0.0000136 0.0000003136 0.00000003136 0.00000003136 0.00000003136 0.00000003136 0.00000003136 0.00000003136 0.00000003136 0.00000002176 0.0000002176 0.0000002176 0.000002178 0.0000002172 0.00163 0.0002718 0.0000002372 0.00163 0.0002176 0.0000002372 0.00163 0.000222 00000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.0000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.0000000136 0.00122 0.000000137 0.00122 0.000000137 0.00122 0.000000136 0.00122 0.0000000136 0.00122 0.000000136 0.00122 0.0000000165 0.00122 0.0000000165 0.00122 0.0000000165 0.00122 0.0000000165 0.00122 0.000000165 0.00122 0.000000156 0.00122 0.00000126 0.00000126 0.00000126 0.000000126 0.000000126	2	DY	LinBespSpec	May	1 0000002371	0 90787	1 0000000156	0.002701	0.00130
3 DY LinRespSpec Max 100000002372 0.00163 0.002718 0.00000027 4 DX LinRespSpec Max 1.00000002372 0.00163 0.002718 0.00000027 4 DX LinRespSpec Max 0.500246 1.00000001999 0.00174 0.000000392 0.00125 5 DX LinRespSpec Max 0.500246 1.00000001999 0.000222 0000000137 0.00122 5 DY LinRespSpec Max 0.500246 1.00000001999 0.000222 0000000137 0.00124 5 DY LinRespSpec Max 0.500246 1.00000001999 0.000174 0.00000092 0.00124 6 DY LinRespSpec Max 0.500246 1.0000000259 0.00012 0.000001576 0.00124 7 DY LinRespSpec Max 0.500246 1.0000000259 0.000012 0.000001576 0.00124 7 DY LinRespSpec Max 0.500246 1.0000000259 0.00002 0.00001576 0.00124 8 DY <	3	DX	LinBespSpec	Max	0.500246	1,0000001939	0.002126	0.0002101	0.00132
3 D1 D1 <td< td=""><td>3</td><td>DY</td><td>LinBespSpec</td><td>May</td><td>1 0000002372</td><td>0 90787</td><td>0.002120</td><td>0.0000000010</td><td>0.00132</td></td<>	3	DY	LinBespSpec	May	1 0000002372	0 90787	0.002120	0.0000000010	0.00132
4 DY LinRespSpec Max 100000002388 0.000180 0.000200011 0.002687 0.000000132 5 DX LinRespSpec Max 0.0000002371 0.001801 0.002687 0.000000137 0.001220 5 DY LinRespSpec Max 0.0000002371 0.90787 0.000000162 0.00264 00000001637 0.00124 6 DX LinRespSpec Max 0.500246 1.00000002372 0.90787 0.001801 0.002687 0.0000095 7 DX LinRespSpec Max 0.500246 1.0000000259 0.00012 0.000001576 0.00121 7 DX LinRespSpec Max 0.500246 1.0000000259 0.000012 0.000001576 0.00121 7 DY LinRespSpec Max 0.500246 1.0000000259 0.00002 0.00000153 0.00121 8 DY LinRespSpec Max 0.500246 1.00000002762 0.002688 0.000000237 9 DY LinRespSpec Max 0.500246 1.00000002762 0.0002688 0.000000233	4	DX	LinBespSpec	Max	0.500246	1 0000001999	0.000174	0.0002110	0.00000211
4 0	4	DY	LinBespSpec	Max	1 000002388	0 90787	0.000114	0.000000002	0.00120
0 0	5	DX	LinBespSpec	Max	0.500246	1 0000001999	0.0000222	0000006137	0.000000000
6 DX LinRespSpec Max 0.0000001999 0.00014 0.00000092 0.00124 6 DY LinRespSpec Max 0.00000002372 0.90787 0.001801 0.002687 0.00000955 7 DX LinRespSpec Max 0.0000002372 0.90787 0.00112 0.000001576 0.00124 7 DY LinRespSpec Max 0.0000002388 0.90787 0.001789 0.002688 0.00000183 8 DX LinRespSpec Max 0.500246 0.000000259 0.00020 00000001639 0.00124 8 DY LinRespSpec Max 0.500246 0.000000259 0.00020 00000001639 0.001237 9 DX LinRespSpec Max 0.500246 0.000000259 0.000012 0.000001237 9 DY LinRespSpec Max 0.500246 0.000000259 0.00012 0.000001237 0.001789 0.002688 0.000001237 9 DY LinRespSpec Max 0.500246 0.00000259 0.0001789 0.0002688 0.00000139	5	DY	LinBespSpec	Max	1 000002371	0 90787	0000001962	0.00264	00000167
6 DY LinRespSpec Max 1.00000002372 0.00181 0.000002587 0.001001 7 DX LinRespSpec Max 0.500246 1.000000259 0.001012 0.00001576 0.00121 7 DX LinRespSpec Max 0.500246 1.000000259 0.00012 0.000001576 0.00121 7 DY LinRespSpec Max 0.500246 1.000000259 0.00002 0000001639 0.00124 8 DX LinRespSpec Max 0.500246 1.0000000259 0.00002 00000002372 0.001789 0.002681 0.0000002373 8 DY LinRespSpec Max 0.500246 1.0000000259 0.000012 0.000001237 9 DX LinRespSpec Max 0.500246 1.0000000259 0.000012 0.000001376 0.00124 9 DY LinRespSpec Max 0.500246 1.0000000219 0.00001239 0.00124 10 DX LinRespSpec Max 1.000000	6	DX		Max	0.500246	1,0000001,999	0.000174	0.000204	0.00129
7 DX LinRespSpec Max 0.500246 0.000002059 0.000012 0.000001576 0.0012 7 DY LinRespSpec Max 0.0000002388 0.90787 0.001789 0.000001539 0.000012 8 DX LinRespSpec Max 0.500246 0.0000002059 0.00002 00000001639 0.00124 8 DY LinRespSpec Max 0.500246 0.000000259 0.00002 00000002372 0.00024 0.000001576 0.00124 9 DX LinRespSpec Max 0.500246 0.000000259 0.000012 0.000001576 0.00124 9 DY LinRespSpec Max 0.500246 0.000000259 0.000012 0.000001376 0.00124 10 DX LinRespSpec Max 0.500246 0.00000542 0.000001239 0.00124 10 DY LinRespSpec Max 0.0000002388 0.90787 0.00179 0.002687 0.00000144	6	DY	LinBesnSpec	Max	1 000002372	0.90787	0.001801	0.002687	0.000120
7 DY LinRespSpec Max 1.0000002388 0.90787 0.001789 0.002688 0.00000183 8 DX LinRespSpec Max 0.500246 1.0000002259 0.00002 00000001633 0.0012 8 DY LinRespSpec Max 1.0000002371 0.90787 00000002762 0.002641 00000002373 9 DX LinRespSpec Max 0.500246 1.000000259 0.00012 0.00001576 0.0012 9 DX LinRespSpec Max 0.500246 1.000000259 0.00012 0.000001576 0.0012 9 DY LinRespSpec Max 0.500246 1.0000002372 0.90787 0.001789 0.002688 0.00000138 10 DX LinRespSpec Max 0.500246 1.0000002388 0.90787 0.00179 0.002687 0.00000144 10 DY LinRespSpec Max 1.00000002388 0.90787 0.00179 0.002687 0.00000144	7	DX		Max	0.500246	1.00000002059	0.000012	0.000001576	0.00128
8 DX LinRespSpec Max 0.500246 1.0000002059 0.00002 00000001639 0.012* 8 DY LinRespSpec Max 1.0000002371 0.90787 00000002762 0.002641 00000002373 9 DX LinRespSpec Max 0.500246 1.0000002259 0.000012 0.00001576 0.0012* 9 DY LinRespSpec Max 0.500246 1.0000002372 0.90787 0.001789 0.002688 0.0000018* 10 DX LinRespSpec Max 0.500246 1.0000002378 0.001789 0.002687 0.0000018* 10 DX LinRespSpec Max 0.500246 1.0000002388 0.90787 0.00179 0.002687 0.0000014* 10 DY LinRespSpec Max 1.00000002388 0.90787 0.00179 0.002687 0.0000014*	7	DY		Max	1.0000002388	0.90787	0.001789	0.002688	0.000000188
8 DY LinRespSpec Max 1,00000002371 0.90787 00000002762 0.002641 00000002372 9 DX LinRespSpec Max 0.500246 1,0000002259 0.00012 0.00001576 0.00123 9 DY LinRespSpec Max 1,00000002372 0.90787 0.001789 0.002688 0.00000183 10 DX LinRespSpec Max 0.500246 1,00000002312 0.90787 0.001789 0.002688 0.00000183 10 DX LinRespSpec Max 0.500246 1,00000002319 0.00005642 0.000001239 0.00124 10 DY LinRespSpec Max 0.0000002388 0.90787 0.00179 0.002687 0.00000144	8	DX	LinBespSpec	Max	0.500246	1.00000002059	0.00002	00000001639	0.00125
9 DX LinRespSpec Max 0.500246 0.000002059 0.000012 0.000001776 0.0012 9 DY LinRespSpec Max 0.0000002372 0.90787 0.001789 0.002688 0.00000183 10 DX LinRespSpec Max 0.500246 0.0000002119 0.00000542 0.000001239 0.00123 10 DX LinRespSpec Max 0.500246 0.0000002119 0.00000542 0.000001239 0.00123 10 DY LinRespSpec Max 0.50000002388 0.90787 0.00179 0.002687 0.00000144 0 DY LinRespSpec Max 0.0000002388 0.90787 0.00179 0.002687 0.00000144	8	DY		Max).00000002371	0.90787	000000002762	0.002641	0000000231
9 DY LinRespSpec Max).0000002372 0.90787 0.001789 0.002688 0.0000018 10 DX LinRespSpec Max 0.500246).0000002119 0.00005642 0.000001239 0.00123 10 DY LinRespSpec Max 0.500246).0000002119 0.00005642 0.000001239 0.00124 10 DY LinRespSpec Max).00000002388 0.90787 0.00179 0.002687 0.00000144 ordt IM Imax j.00000002388 0.90787 0.00179 0.002687 0.000000144	9	DX		Max	0.500246	3.00000002059	0.000012	0.000001576	0.00128
10 DX LinRespSpec Max 0.500246 0.0000002119 0.000005642 0.000001239 0.00123 10 DY LinRespSpec Max 0.0000002388 0.90787 0.00179 0.002687 0.00000014; ord: I	9	DY		Max).00000002372	0.90787	0.001789	0.002688	0.000000188
10 DY LinRespSpec Max).00000002388 0.90787 0.00179 0.002687 0.00000014; ord: I	10	DX		Max	0.500246	3.00000002119	0.000005642	0.000001239	0.00128
ord: I I I I of 2760 Add Tables	10	DY	LinRespSpec	Max).00000002388	0.90787	0.00179	0.002687	0.000000142
ord: I I I I I of 2760 Add Tables									
	ord: 📕 🖣		of 2760					Add Tables	Don
			5	A Dernin		Q 4			
		Gam	bar <mark>4.26</mark> .	Pemeril	ksaan sim	ipangan a	antar lan	tai.	
Gambar 4.26. Pemeriksaan simpangan antar lantai.				E		1			
Gambar 4.26. Pemeriksaan simpangan antar lantai.				2050	3.05				

_			Reinforcement Data		
Section Name Section Notes	BALOK	20/30 Modify/Show Notes	Rebar Material Longitudinal Bars Confinement Bars (Ti	+ BAJ es) + BAJ	IA 240 💌
Properties Section Properties Dimensions Depth (t3) Width (t2)	Property Modifiers Set Modifiers 0.3 0.2	Material + BETON BALOK 19! - 3+ Display Color	Design Type C Column (P-M2-M3 © Beam (M3 Design Concrete Cover to Lor Top Bottom Reinforcement Overrid Top	3 Design) n Only) ngitudinal Rebar Ce les for Ductile Bear Left 3.	nter 0.03 0.03 ms Right 3.
Concrete Reinforceme	nt		Bottom	ζ.]Ζ.
	OK Ca	ncel	(ancel

Gambar 4.27. Input Tulangan Balok

Rectangular Section			Reinforcement Data
Section Name	BALOK 3	30/50	Rebar Material
	IDALOK 3		Longitudinal Bars + BAJA 240 -
Section Notes		Modity/Show Notes	Confinement Bars (Ties) + BAJA 240 -
Properties	Property Modifiers	Material	- Design Tupe
Section Properties	Set Modifiers	+ BETON BALOK 19.! -	C Column (P-M2-M3 Design)
Dimensions			 Beam (M3 Design Only)
Depth (t3)	0.5	2	- Concrete Cover to Longitudinal Behar Center
	0.3		
Width (t2)	10.0		Top J0.03
		3.	Bottom 0.03
			Reinforcement Overrides for Ductile Beams
			Left Right
			Top 5. 5.
		Display Color	Bottom 5
Concrete Beinforcem	ent		Jokom Jo.
	OK Can	icel	Lancel
Rectangular Section			Rebar Material Longitudinal Bars + BAJA 240 Confinement Bars (Ties) + RAJA 240
Section Name	KOLOM 4	45/45	Column (P-M2-M3 Design)
Section Notes		Modify/Show Notes	O Beam (M3 Design Only)
Properties	Property Modifiers	Material	Reinforcement Configuration Confinement Bars
Section Properties	Set Modifiers	+ BETON KOLOM 19	Rectangular O Ties
Dimensions		b	C C Spiral
Depth (t3)	0.45		Longitudinal Bars - Rectangular Configuration
Width (t2)	0.45		Number of Longit Bars Along 3-dir Face
			Number of Longit Bars Along 2-dir Face 3
			Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d •
			Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d •
		Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d Confinement Bars Confinement Bar Size + 20d
		Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + Confinement Bars Confinement Bar Size Longitudinal Spacing of Confinement Bars 100.
Concrete Reinforcem	ent	Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d Confinement Bars Confinement Bars - Longitudinal Spacing of Confinement Bars 100. Number of Confinement Bars in 3-dir 3
Concrete Reinforcem	ent DK Can	Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d Confinement Bars - 20d Longitudinal Spacing of Confinement Bars 100. Number of Confinement Bars in 3-dir 3 Number of Confinement Bars in 2-dir 3
Concrete Reinforcem	ent DK Can	Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + Confinement Bars Confinement Bars Size + Longitudinal Spacing of Confinement Bars Number of Confinement Bars in 3-dir Number of Confinement Bars in 2-dir 3 Check/Design
Concrete Reinforcem	ent OK Can	Display Color	Number of Longit Bars Along 2-dir Face 3 Longitudinal Bar Size + 20d Confinement Bars - Confinement Bars Size + 20d Longitudinal Spacing of Confinement Bars 100. Number of Confinement Bars in 3-dir 3 Number of Confinement Bars in 2-dir 3 Check/Design OK

Gambar 4.29. Input Tulangan Kolom

4.13.2 Menentukan Gravity Nonlinier Case

Loads Applied

Accel

Load Type

Other Parameters

Load Application

Nonlinear Parameters

Results Saved

Load Name

▼ -1

Full Load

Final State Only

Default

▼ UX

Scale Factor

Load Case Name		Notes	Load Case Type
GRAVITY	Set Def Name	Modify/Show	Static
Initial Conditions			- Analysis Type
 Zero Initial Condition 	s - Start from Unstressed :	State	C Linear
C. Continue from State	at End of Monlinear Case	_	Nonlinear
Important Note: Loa	ds from this previous case	e are included in the	C Nuclear Charles Charles
cun	ent case		 Nonlinear Staged Construction
Modal Load Case			Geometric Nonlinearity Parameters
All Modal Loads Applied	Use Modes from Case	MODAL -	C None
		,	P-Delta
Loads Applied			C P-Delta plus Large Displacements
Load Type Loa	d Name Scale Facto	or	
Load Patterr V SUPE			
Load Pattern SUPE	R DEAD L 1	Add	
		Modify	
		Delete	
Other Parameters			
Load Application	Full Load	Modify/Show	
Results Saved	Final State Only	Modify/Show	Cancel
Nonlinear Parameters	Default	Modify/Show	
	Si	m'n	
Gambar.2.	30. Input Stat	tic Nonlinier (Case Gravity arah Y
id Case Data - Nonline	ar Static		
- Load Case Name		- Notes	
PUSH-X	Set Def Name	Modify/Show	Static Design
1			
Initial Conditions			Analysis Type
C Zero Initial Conditio	ns - Start from Unstressed	d State	C Linear
 Continue from State 	e at End of Nonlinear Cas	e GRAVITY 💌	 Nonlinear
Important Note: Lo	bads from this previous ca arrent case	ase are included in the	C Nonlinear Staged Construction
- Modal Load Case			- Geometric Nonlinearity Parameters
All Model Loads Applie	d Lise Modes from Case	MODAL	C None
Air Mouai Loaus Applie	a ose modes nom Case	MODAL	() None

Gambar.4.31. Input Static Nonlinier Case Gravity arah X

Modify/Show...

Modify/Show...

Modify/Show...

Add Modify Delete O P-Delta plus Large Displacements

ОК

Cancel

4.13.3 Menentukan Nonlinier Pushover Case

Land Case Date

Load Case Name		Notes	Load Case Type	
PUSH-X	Set Def Name	Modify/Show	Static	▼ Desig
Initial Conditions			Analysis Type	
C Zero Initial Cond	oad Application Contro	l for Nonlinear Static A	Analysis	
Important Note:	Load Application Contr	ol		Construction
	C Full Load			construction
Modal Load Case	 Displacement Cor 	ntrol		arameters
All Modal Loads App	Control Displacement			
Loads Applied	C Use Conjugate Di	splacement		
Load Type	 Use Monitored Di 	splacement		Displacements
Accel U Accel U	Load to a Monitored D	isplacement Magnitude (of 0.267	
	- Monitored Displacement	nt		
	DOF U1	▼ at Joint	77	
	C Generalized Displ	acement	Ŧ	
1		DK Can	cel	
Other Parameters				
Load Application	Full Load	Modify/Show		UK
Results Saved	Final State Only	Modify/Show	C	ancel
Nonlinear Parameters	Default	Modify/Show		

Gambar.4.32. Load Aplicatioon Control for static nonlinier Push - X 2 V

Load Case Name		Notes	Load Case Type
IPUSH-Y	Set Def Name	Modify/Show	Static
Initial Conditions C Zero Initial Condition C Continue from State Important Note: Lo cu Modal Load Case All Modal Loads Applied Load Type Load Type Load Type Load Type Load Type Load Type Load Type Load Type Load Load Accel UX	as - Start from Unstressed S at End of Nonlinear Case ads from this previous case rent case If Use Modes from Case ad Name Scale Facto I I.	GRAVITY GRAVITY GRAVITY GRAVITY Add MODAL Add Modify Delete	Analysis Type C Linear R Nonlinear Nonlinear Staged Construction Geometric Nonlinearity Parameters None P-Delta C P-Delta C P-Delta plus Large Displacements
Other Parameters Load Application Results Saved Nonlinear Parameters	Displ Control Multiple States Default	Modify/Show Modify/Show Modify/Show	Cancel

Gambar.4.33. Static nonlinier Push - Y

Load	Case	Data	-	Non	linear	Static

Load Case Name		Notes	Load Case Type	
PUSH-Y	Set Def Name	Modify/Show	Static	▼ Design.
Initial Conditions			Analysis Type	
C Zero Initial Cond	ad Application Control	for Nonlinear Static A	Analysis	
Important Note:	C Full Load	I		Construction
Modal Load Case	 Displacement Cont 	Parameters		
All Modal Loads App	Control Displacement — Use Conjugate Dis			
	Use Monitored Disp	Displacements		
Accel U	Monitored Displacement	splacement Magnitude	or 10.267	
	ODF U1 C Generalized Displacement	at Joint	77	
	<u> </u>	K Can	cel	
Other Parameters				or 1
Load Application	Displ Control	Modify/Show		UK
Results Saved	Multiple States	Modify/Show	C	ancel
Nonlinear Parameters	Default	Modifu/Show		

Gambar.4.34. Load Aplicatioon Control for static nonlinier Push - Y

4.13.4 Memodelkan Sendi Plastis pada Balok dan Kolom

Frame Hinge Assignments

Frame Hinge Assignment Data		
Hinge Property	Relative Distance	
Auto	0.05	
Auto M3	0.05	Add
		Modify
		Delete
		Delete
1		
- Auto Hinge Assignment Data		
Type: From Tables In FEMA 3	356	
Table: Table 6-7 (Concrete B) DOF: M3	eams - Flexure) Item i	
Modify/Show	Auto Hinge Assignment [Data
(OK	Cancel	

Gambar.4.3. Input Hinge pada balok

Erom Tables In EEM	A 956		•		
I Toll Tables ITT LIN					
Select a FEMA356 Tal					
Table 6-7 (Concrete	Beams - Flexure) Item i		<u>•</u>		
Component Type	Degree of Freedom	V Value From			
Primary	C M2	Case/Combo	GRAVITY 💌		
C Secondary		C User Value	V2		
ransverse Beinforcing) / pbalanced		
Transverse Reinfo	, rcing is Conforming	From Current Design			
		C User Value			
)eformation Controlled	Hinge Load Correins				
Drops Load After F	Point E				
 Is Extrapolated Aft 	er Point E				
	OK	Cancel			
	asi	any s			
	Gambar 4 36 Input	data Hinge ASCE	41 - 13		
	Gambar.4.36. Input	data Hinge ASCE	41 -13		
me Hinge A	Gambar.4.36. Input	data Hinge ASCE	41 -13		
me Hinge A	Gambar.4.36. Input ssignments	data Hinge ASCE	41 -13		
<mark>me Hinge A</mark> - Frame Hinge Hir	Gambar.4.36. Input ssignments Assignment Data	data Hinge ASCE	41 -13		
me Hinge As Frame Hinge Hir	Gambar, 4.36. Input ssignments Assignment Data	data Hinge ASCE	41 - 13		
Frame Hinge A Frame Hinge Hir Auto	Gambar.4.36. Input ssignments Assignment Data nge Property R 0.9	data Hinge ASCE	41 -13		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property Ru 0.9 0.0 0.0	data Hinge ASCE	41-13 Add		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property Ri 0.9 0.0 0.0	data Hinge ASCE	41-13 Add		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property R 0.9 0.0 0.0	data Hinge ASCE	41 -13 Add Modify		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property Ri 0.9 0.9 0.9	data Hinge ASCE	41 -13 Add Modify		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data age Property R 0.9 0.0 0.0	data Hinge ASCE	41 -13 Add Modify Delete		
Frame Hinge A Frame Hinge Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property R 0.9 0.0 0.0	data Hinge ASCE	41 -13 Add Modify Delete		
Frame Hinge A Frame Hinge Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property Ru Q.9 0.9	data Hinge ASCE	41-13 Add Modify Delete		
Frame Hinge A Frame Hinge Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data nge Property R 0.9 0.0 0.0	data Hinge ASCE	41 -13 Add Modify Delete		
- Frame Hinge A Hir Auto Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data ge Property R 0.9 0.0 0.0 0.9	data Hinge ASCE	41-13 Add Modify Delete		
- Frame Hinge A Hir Auto Auto M3 Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data 9 0.9 0.0 0.0 0.9 0.0 0.9 0.9 0.9 0.9 0.9	data Hinge ASCE	41-13 Add Modify Delete		
- Frame Hinge A Hir Auto Auto M3 Auto M3 Auto M3 - Auto Hinge / Type: Fron Table: Tab	Gambar.4.36. Input ssignments Assignment Data ge Property Ri 0.9 0.0 0.0 0.9 0.9 0.9 0.9 0.9 0.9 0.9	data Hinge ASCE	41 -13 Add Modify Delete		
- Frame Hinge A Hir Auto Auto M3 Auto M3 Auto M3 - Auto Hinge A Type: From Table: Tab DOF: M3	Gambar.4.36. Input ssignments Assignment Data ge Property R 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.9	data Hinge ASCE	41-13 Add Modify Delete		
Auto M3 Auto M3 Auto M3 Auto M3 Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data ge Property Ri 0.9 0.0 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.9	data Hinge ASCE	41-13 Add Modify Delete		
Auto M3 Auto M3 Auto M3 Auto M3 Auto M3 Auto M3	Gambar.4.36. Input ssignments Assignment Data oge Property Re 0.9 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	data Hinge ASCE	41 -13 Add Modify Delete		
- Frame Hinge A Hir Auto Auto M3 Auto M3 Auto M3 - Auto Hinge / Type: Fron Table: Tab DOF: M3	Gambar.4.36. Input ssignments Assignment Data Deperty D.9 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.0 0.9 0.9	data Hinge ASCE	41 -13		

Gambar.4.37. Input Hinge pada kolom

Auto Hinge Assign				
uto Hinge Type				
From Tables In FEI	MA 356			
elect a FEMA356 T	able			
Table 6-8 (Concret	te Columns - Flexure) It	tem i		•
Component Type	Degree of Freed	dom	P and V Values From-	
Primary	C M2	C P-M2	Case/Combo	GRAVITY
C Secondary	© M3	C P-M3	C. Lloer Value	,
	C M2-M3	P-M2-M3		1/2
			¥Z]	V3
ransverse Reinforci	ing		Deformation Controlled	Hinge Load Carrying Capacity
🗸 Transverse Rein	forcing is Conforming		Orops Load After P	Point E
			C Is Extrapolated Afte	er Point E
		I OK I	Cancel	
	Gambar.4	OK 4.38. Input dat	ta Hinge ASCE	41 -13
3.5 Runnin pad Cases to Run	Gambar.4 ng Program	4.38. Input da	Lancel	41 - 13
3.5 Runnin	Gambar.4 ng Program	4.38. Input da	Lancel	41-13
3.5 Runnin oad Cases to Run Case Name	Gambar.4 ng Program	I.38. Input da	Cancel ta Hinge ASCE	41 - 13 Click to: Run/Do Not Run Case
3.5 Runnin oad Cases to Run Case Name DEAD MODAL	Gambar,4 ng Program	OK 4.38. Input da Gife Status Not Run Not Run Not Run	Cancel ta Hinge ASCE Action Run Run Run	41 - 13 Click to: Run/Do Not Run Case Show Case
3.5 Runnin oad Cases to Run Case Name DEAD MODAL DEAD LOAD	Gambar.4 ng Program	4.38. Input dat	Cancel ta Hinge ASCE Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Besuits for Case
3.5 Runnin oad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA LIVE LOAD	Gambar,4 ng Program	OK 4.38. Input da UTE Status Status Not Run Not Run Not Run Not Run Not Run	Cancel ta Hinge ASCE Action Run Run Run Run Run Run Run Run Run	41-13 Click to: Run/Do Not Run Case Show Case Delete Results for Case
3.5 Runnin pad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA LIVE LOAD SX	Gambar, 4 og Program	OK 4.38. Input da Vijiji Status Status Not Run Not Run Not Run Not Run Not Run Not Run	Cancel ta Hinge ASCE Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case
3.5 Runnin oad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA SV SY DX	Gambar, 4 ng Program Type Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static	OK 4.38. Input da Status Status Not Run Not Run	Cancel ta Hinge ASCE Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All
3.5 Runnin oad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA LIVE LOAD SX SY DX DX DY	Gambar, 4 ng Program	OK 4.38. Input dat Status Status Not Run Not Run	Cancel ta Hinge ASCE Action Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results
3.5 Runnin Dad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA SUPER DEAD LOA LIVE LOAD SX SY DX DX DY GRAVITY PUSEX	Gambar, 4 ng Program Type Linear Static Modal Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Response Spectrum Response Spectrum Nonlinear Static Nonlinear Static	OK 4.38. Input da Status Status Not Run Not Run	Cancel ta Hinge ASCE Action Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results
3.5 Runnir oad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA LIVE LOAD SX SY DX DY GRAVITY PUSH-X PUSH-Y	Gambar, ag Program Type Linear Static Modal Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Response Spectrum Response Spectrum Response Spectrum Nonlinear Static Nonlinear Static Nonlinear Static	OK 4.38. Input dat Status Status Not Run Not Run	Cancel ta Hinge ASCE Action Run Run Run Run Run Run Run Run Run Ru	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results Show Load Case Tree
3.5 Runnin oad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA SUPER DEAD LOA SY SY DX DY GRAVITY PUSH-X PUSH-X PUSH-Y	Gambar, 4 ag Program Type Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static	OK 4.38. Input da Status Status Not Run Not Run	Cancel	41 -13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results Show Load Case Tree
3.5 Runnin Dad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA LIVE LOAD SX SY DX DY GRAVITY PUSH-X PUSH-Y nalysis Monitor Optic C Always Show	Gambar, ag Program Type Linear Static Modal Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Response Spectrum Response Spectrum Response Spectrum Nonlinear Static Nonlinear Static Nonlinear Static	A.38. Input dat Status Status Not Run Not Run	Cancel	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results Show Load Case Tree
3.5 Runnin Dad Cases to Run Case Name DEAD MODAL DEAD LOAD SUPER DEAD LOA SUPER DEAD LOA LIVE LOAD SX SY DX DY GRAVITY PUSH-X PUSH-X PUSH-Y nalysis Monitor Optic	Gambar. ag Program Type Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Linear Static Nonlinear Static Nonlinear Static Nonlinear Static Nonlinear Static	OK 4.38. Input da Status Status Not Run Not Run	Action Action Run Run	41 - 13 Click to: Run/Do Not Run Case Show Case Delete Results for Case Run/Do Not Run All Delete All Results Show Load Case Tree Model-Alive Run Now

Gambar, 4.39.Memilih Load case to run

4.13.6 Menampilkan Kurva Kapasitas Pushover

Gambar.4.41. Display tabel pushover Curve X

🖏 Table Display

File	Edit											
		Pushover Curve - PUSH-Y										
Step		Displacemer	BaseForce	AtoB	Btol0	10toLS	LStoCP	CPtoC	CtoD	DtoE	BeyondE	Total
		m	KN									
	0	-3.558E-20	0.000	621	0	0	0	0	0	0	0	621
	1	0.005951	1534.002	620	1	0	0	0	0	0	0	621
	2	0.006017	1550.560	600	21	0	0	0	0	0	0	621
	3	0.012189	2031.346	583	38	0	0	0	0	0	0	621
	4	0.012330	2037.952	573	48	0	0	0	0	0	0	621
	5	0.014731	2077.295	570	51	0	0	0	0	0	0	621
	6	0.016708	2094.290	567	54	0	0	0	0	0	0	621
	7	0.043408	2073.142	567	27	27	0	0	0	0	0	621
	8	0.070108	2051.991	567	0	35	19	0	0	0	0	621
	9	0.080586	2043.692	567	0	1	51	0	2	0	0	621
	10	0.084590	2038.233	567	0	0	35	0	19	0	0	621
	11	0.092170	1988.932	567	0	0	11	0	43	0	0	621
	12	0.124561	1526.533	567	0	0	0	0	54	0	0	621
	13	0.151261	1136.588	567	0	0	0	0	54	0	0	621
	14	0.177961	746.643	567	0	0	0	0	54	0	0	621
	15	0.204661	356.698	567	0	0	0	0	54	0	0	621
	16	0.231361	-33.247	567	0	0	0	0	54	0	0	621
	17	0.258061	-423.192	567	0	0	0	0	50	4	0	621
	18	0.258061	-423.192	567	0	0	0	0	50	2	2	621
	19	0.260177	-454.140	567	0	0	0	0	16	34	4	621
	20	0.260177	-454.140	567	0	0	0	0	16	19	19	621
	21	0.260177	-454.140	567	0	0	0	0	16	5	33	621
	22	0.260177	-454.140	567	0	0	0	0	16	0	38	621
	23	0.262025	-481.402	567	0	0	0	0	1	15	38	621
	24	0.262025	-481.402	567	0	0	0	0	1	8	45	621
	25	0.262025	-481.402	567	0	0	0	0	1	2	51	621
	26	0.267000	-555.151	567	0	0	0	0	0	0	54	621
Currer	Current Sort String											

Current Filter String

Done

Gambar.4.42. Display tabel pushover Curve Y

PH

4.13.7 Level Kinerja Struktur

Parameters For ATC-40 Capacity Spectrum

Pushover Pa	A40P01		Units KN, m, C
Plot Axes	C Sa-T C Sd-1	Axis	Labels and Range Set Axis Data
Demand Spe	ctrum Definition		
C Functio	n		SF
Oser Co	effs Ca 0.4151		Cv 0.7613
Damping Par	ameters Definition		
Inherent + A	Additional Damping		0.05
Structural B	ehavior Type		
O A	G B C C	C User	Modify/Show
Items Visible	On Plot		
Show C	apacity Curve		Color
Show F	amily of Demand Spectra		Color
Dampi	ng Ratios		
0.05	0.1	0.15	0.2
Show S	ingle Demand Spectrum /ariable Damping)	(ADRS)	Color
Show (Constant Period Lines at		Color
0.5	1.	1.5	2.
-	Reset D	efault Colors	
	Upda OK	te Plot Cance	_] el [

Gambar.4.43. Input parameter kapasitas spectra ATC - 40

Gambar.4.45. Spektrum kapasitas arah Y

Gambar.4.47. Push X step 8

Gambar.4.49. Push Y step 10

Gambar.4.50. Deformed Shape Gravity

Dimana:

A = Merupakan kondisi dimana belum ada pembebanan sehingga belum terjadi plastifikasi pada sendi plastis.

B = Merupakan kondisi dimana elemen mulai mengalami leleh yang pertama kali.

IO = Merupakan tahapan setelah leleh (plastis) dengan Tingkat knierja pada elemen *Immediately Ocupancy*.

LS = Elemen pada level kinerja *Life Safety* (kondisi plastis).

CP = Elemen pada level kinerja *Collapse Prevention* (kondisi hampir runtuh).

C = Merupakan kapasitas ultimit dari elemen.

D = Kekuatan sisa dari elemen struktur.

E = Merupakan batas elemen sudah mengalami keruntuhan.

dt - x = 0,267 m

dt - y = 0,267 m

d3 = 0,0121 m

d3 = 0,0121 m

Simpangan total maksimum

Arah x - x = dt / h total = 267 / 9600 = 0,027 (*Life safety*)

Arah y – y = dt / h total = 267 / 9600 = 0,027 (*Life safety*)

Simpangan inelastic maksimum

Arah x – x = dt – dt / h total = 267 -12,1 / 9600 = 0,026 (*Life Safety*)

Arah y – y = dt – dt / h total = 267 - 12, 1 / 9600 = 0,026 (*Life Safety*)

Balok 30/50									
	Р	V2	V3	Т	M2	M3			
	KN	KN	KN MUHAA	KN-m	KN-m	KN-m			
Max		80.521	7.738E- 17	9.434	-4.087E- 17	-105,3398			
Min		-80.521	-7.738E-	-9,434	-3.666E- 17	57.0877			
		* (11	Balok 20/3	5×11					
	Р	v2	V3	T	M2	M3			
	KN	KNA7	ERABA	KN-m	KN-m	KN-m			
Max		41.09	8.856E-	5.9168	4.669E-	47,59			
			17		17				
Min		-41.09	8.856E-	-5.9168	-3.447E-	-22.52			
			17		17				
]	Kolom 45/4	5					
	Р	V2	V3	Т	M2	M3			
	KN	KN	KN	KN-m	KN-m	KN-m			
Max	-867.661	39.062	49.361	4.024E- 08	83.2116	76.0941			
Min	-17.241	-39.062	-49.361	4.024E- 08	-83.2116	-76.0941			

4.14 Rekapitulasi Gaya dalam Balok dan Kolom

4.15 Perhitungan Kolom, Balok dan Pelat Lantai

Pada tahap ini melakukan perhitungan terhadap struktur atas yang meliputi kolom, balok, dan pelat lantai hasil dari analisis pemeriksaan jumlah ragam.

1. Balok 30/50 Perencanaan tulangan balok a. Diketahui : Mu = -79,987 Be = L/4 = 4000/4 = 1000 mmBe = Bw + 16 x t = 300 + 16 x 120 = 2220 mm Be = Bw + Ln = 300 + 3700 = 4000 mm Ln diambil dari jarak bersih dari antara balok anak Ln = L - Bw = 4000 - 300 = 3700 mmData : Fc = 20 MpaFy = 400 MpaMu = -79,987 NmmBe = 1000 mmBw = 300 mm

P = 40 mm

Dtul geser = 10 mm

$$d = h - p (1/2 D_{tul-utama}) - D_{tul-geser}$$
$$= 500 - 40 - 19/2 - 10 = 440.5$$

Hitung :

Mn perlu = Mu / \emptyset = -79,987 / 0,8 = -99,98375 Mna = t = 0.85 x fc x Be x t x (d - t/2) = 0.85 x 19.5 x 1000 x 120 x (440,5-120/2) = 756814500 a actual = $d - \sqrt{d^2 - \frac{2Mu}{0.85 \times FC \times Be}}$ = $440.5 - \sqrt{\frac{440.5^2 - 2.79.987}{0.85 \times 19,5 \times 0.8 \times 1000}}$ = = 440.5 - 3130033,662= -3129593,162

$$P = 0.85 \text{ x fc x Be x a actual} = 0.85 \text{ x } 19,5 \text{ x } 1000 \text{ x } -3129593,162$$

Bw x d x fy = 300 x 440,5 x 400

= -981.3281622

P min = 1,4 / fy = 1,4 / 400 = 0,0035

As = p x Bw x d = 0.0035 x 300 x 440,5 = 462,53 mm

SU

b. Tulangan tumpuan

Data :

fc = 19,5

fy = 400

Mu tumpuan = $2 \times Mu = \frac{2 \times -79,987}{2 \times -79,987} = -159,974$

Be = 1000

Bw =300

P = 40

Dtul.geser :

d = 50

t = 120

 $d = h - p (1/2 D_{tul-utama}) - D_{tul-geser}$

= 500 - 40 19 /2 -10 = 440,5

Hitung :

Mn perlu = Mu / \emptyset = -79,987 / 0,8 = -99,98375

Mna = t = 0.85 x fc x Be x t x (d - t/2) / 0,85

= 0.85 x 19.5 x 1000 x 120 x 440,5 -120 / 2 = 756814500

a actual =
$$d - \sqrt{d^2 - \frac{2Mu}{0.85 \times FCx \ \emptyset \times Be}} = 440.5 - \sqrt{\frac{440.5^2 - 2.79.987}{0.85 \times 19,5 \times 0.8 \times 1000}}$$

= 440, 5 - 194040, 25 = -193599, 75

P = 0.85 x fc x Be x a actual = 0.85 x 19,5 x 1000 x -193599,75

Bw x d x fy = 300 x 440,5 x 400 = -60,7059375

P min = 1,4 / fy = 1,4 / 400 = 0.0035

As = p x Bw x d = -60,7059375 x 300 x 440,5 = -8022289,6

2. Balok 20 / 30

a actual =
$$d - \sqrt{d^2 - \frac{2Mu}{0.85 \times FC \times Be}} = 440.5 - \sqrt{\frac{440.5^2 - 2 - 41.09}{0.85 \times 19,5 \times 0.8 \times 1000}}$$

= 440,5 - -1314204,456 = 1314644,956 P = 0.85 x fc x Be x a actual = 0.85 x 19,5 x 1000 x 1314644,956 Bw x d x fy = 300 x 440,5 x 400 = 412,225504 P = 0.0025

$$P \min = 1,4 / 1y = 1,4 / 400 = 0.0035$$
$$As = p x Bw x d = 412,225504 x 300 x 440,5 = 54475600,4$$

b. Tulangan tumpuan

a actual =
$$d - \sqrt{d^2 - \frac{2Mu}{0.85 \times FC \times Be}} = 440.5 - \sqrt{\frac{440.5^2 - 2 - 41.09}{0.85 \times 19,5 \times 0.8 \times 1000}}$$

= 440,5 - -14488313 = 1314644,956 = 14488753,19

P = 0.85 x fc x Be x a actual = 0.85 x 19,5 x 1000 x 14488313

Bw x d x fy = 300 x 440,5 x 400 = 4543,153313

P min = 1,4 / fy = 1,4 / 400 = 0.0035

3. Kolom

Dimana : K = factor tekuk = 1Lu = Tinggi kolom = 3,2 $\mathbf{r} = \sqrt{\frac{i}{A}} = \sqrt{\frac{1/12.45 \cdot 45^3}{45.45}} = 0.2886'$ atau r = $0,3 \times 45 = 13,5 \text{ mm}$ Jadi : K x Lu / r = $1 \times 3,2 / 0,288675135 = 11.085125$ Pu = Mmn Re balok induk (Kg) x 2 + Mmn Rf balok anak tepi (Kg) / 100 = 12000 x 2 + 19000 / 100 = 24190Ec = 4700 x 20 = 21019,03899 $Ig = 1 / 2 x b x h^{3} = 1 / 2 x 0,45 x 0,45^{3} = 0,0205$ Bd = 0.8 x qdl / 2.5 x qdl + 1.6 x qdl= 0,8 x 5,09 / 2,5 x 5,09 + 1,6 x 1,92 = 0,569988802 $Ei = Ec \times Ig / 2,5 \times 1 + Bd = 21019,03899 \times 0,0205 / 2,5 \times 1 + Bd = 210019,000 \times 1,5 \times 1$ 0,569988802 = 140,377054 $Pc = \pi^2 x Ei / K x Lu = 3,14 x 140,377054 / 1 x 3,2$ = 432.5192505 $\delta = \frac{1}{1 - \frac{430}{0.65x \ 432,5193}} = -1.888571917$ Penulangan untuk kolom tepi Mu = 37.2837

 $Mc = \delta \times Mu = -1.888571917 \times 37.2837 = -70.41294878$
Pn perlu = Pu / ϕ = 24190 / 0,65 = 37215.38462 Mn perlu = Mc / ϕ = -70.41294878 / 0,65 = -108.3276135 **Eksentrisitas** : e = Pn perlu / Mn perlu = 37215.38462 / -108.3276135 = -343.5447659 $e_{min} = 15 + 0.03 \text{ x h} = 15 + 0.03 \text{ x } 450 = 28.5$ Hitung nilai p : d = 0.03h = 20sk = 10d/h = p + d/2 + sk/h = 0.03 + 20/2 + 10/450 = 0.04Sumbu verikal Y Pu / ϕ x Ag x 0,85 x fc = 24190 / 0,65 x 450 x 0,85 x 20 = AS M 0.1081057 Sumbu verikal X 343.545 / 450 = -Pu / ϕ x Ag x 0,85 x fc x e / h = 0.1081057 x 0.0825314 Dari diagram interaksi kolom diperoleh : $\beta = 0.8$ r = 13,5 Maka p = β x r = 0,8 x 13, 5 = 10,8 Hitung luas tulangan : Ast = p x Ag = 10,8 x 450 x 450 = 2187000

```
4. Pelat lantai
```

a) Ratio Panel

Syarat pelat 2 arah

Ly/Lx < 2

1) Perkiraan dimensi balok

h = L / 18,5 = 4000 / 18,5 = 216.2162162 h = 400 mm = 40 cm $b = 1 / 2 \times 400 = 200 \text{ mm} = 20 \text{ cm}$

2) Estimasi tebal pelat

Tebal minimum

h = 1 / 24 = 4000 / 24 = 1666, 667 mm = 16,6 cm

- b) Pembebanan
- Beban Mati

DL berat pelat sendiri	=	0.15	m	X	24	KN/m ³	=	3.6	KN/m ²
Keramik tebal 1 cm	=	0.01	m	X	22	KN/m ⁴	=	0.22	KN/m2
adukan tebal 3 cm	=	0.03	m	X	22	KN/m ⁵	=	0.66	KN/m2
Pasir urug tebal 1 cm	=	0.01	m	Х	16	KN/m ⁶	=	0.16	KN/m2
Plafon	=						=	0.2	KN/m2
Mechanical Electrical	=	MIIL					=	0.25	KN/m2
Berat beban mati taambahan pada lantai (W _D)							=	5.09	KN/m2

• Beban Hidup

Perhitungan beban terfaktor

Beban hidup = $2,5 \text{ Kn/m}^2$

Wu

$$= 1,2 \text{ WD} + 1,6 \text{ WL}$$

= 1,2 (DL + SDL) + 1,66 LL
= 1, 2 + 5,09 + 1,6 x 2,5
= 10,108 Kn/m²

c) Perhitungan Momen

Wu = 10,108 x 1 = 10,108

Lx = 5 - 0,2 = 4,8 m

Ly = 5 - 0,3 = 4,8 m

VIA

VIA

d) Perhitungan Penulangan

d = h - sb - d / 2 = 500 - 20 - 10 / 2 = 475

Skema	Lokasi	Mu	Mn	As	Penulangan
VIA	Mlx	5.8708275	7.33853435	38.62387	10-120 mm
	Mly	6.5753268	8.219158472	43.25873	10-120 mm
	Mtx	12.680987	15.8512342	83.42755	10-120 mm
	Mty	14.089986	17.61248244	92.69728	10-120 mm
VIIB	Mlx	6.5753268	8.219158472	43.25873	10-120 mm
	Mly	5.8708275	7.33853435	38.62387	10-120 mm
	Mtx	14.089986	17.61248244	92.69728	10-120 mm
	Mty	12.680987	15.8512342	83.42755	10-120 mm

Jumlah tulangan

As / A1 = As / 1/4 x π x D² = 7.33853435 / 1 / 4 x 3,14 x 10² = 0.000898544 Jarak tulangan

1000 / 0.000898544 = 1112911.599

Jumlah tulangan actual = 1000 / 400 = 2,50

Cek daktilitas

 $A_{\delta \ Aktual} = 2,50 \ / \ 1 \ / \ 4 \ x \ \pi \ x \ d^2 = 2,50 \ / \ 1 \ / \ 4 \ x \ 3,14 \ x \ 10^2 = 20417.85$

P min = 1,4 / fy = 1,4 / 400 = 0,0035

 $P = A\delta$ Aktual / b x h = 20417.85 / 1000 x 120 = 0,17014875

Jumlah tulangan

As / A1 = 0,17014875 / 01/4 x π x d² = 0.002168

Jarak tulangan = 1000 / 0.002168 = 461361.015

A
δ Aktual = 8.333333333 x 1 / 4 x π x d² = 8.333333333 x 1 / 4 x 3,14 x 10²

 $= 654.1666667 \text{ mm}^2$

Persyaratan jarak tulangan

Jarak max = 500 mm

BAB V

PENUTUP

5.1 Kesimpulan

Analisis kinerja struktur menggunakan metode nonlinier (*Pshover Analysis*) telah dilkukan pada gedung hotel Parai Kota Sawahlunto menggunakan aplikasi SAP 2000 versi 14, berdasarkan hasil evaluasi, simpangan total maksimum arah x dan y berada pada kondisi LS (Life Safety), Life Safety adalah batas aman pada gedung untuk digunakan sebelum mengalami keruntuhan. sedangkan simpangan inelastic maksimum arah x dan y berada pada kondisi Life Safety. beban dorong pada simulasi Pushover bangunan gedung keseluruhan terhenti pada simulasi beban dorong ke 10 atau step ke 10 sudah mengalami keruntuhan, step ke 10 adalah pada saat gedung tersebut diberikan beban dorong arah x dan y, dimana awal terjadinya keruntuhan telah muncul pada kolom lantai satu pada simulasi beban dorong ke tiga, untuk arah x dan y, simulasi *Pushover* adalah analisis beban dorong statik merupakan suatu analisis untuk mengetahui perilaku keruntuhan bangunan terhadap gempa, status kerusakan gedung pada beban dorong ke 10 sudah hampir mengalami keruntuhan yaitu pada peringatan titik C merupakan kapasitas ultimit dari elemen struktur gedung tersebut. sedangkan batas aman bangunan yang diizinkan dalam status *Life Safety*, yaitu pada gedung telah mengalami kerusakan akan tetapi masih aman untuk digunakan. yaitu pada gedung telah mengalami kerusakan akan tetapi masih aman untuk digunakan. simpangan total arah maksimum arah x 0,027 mm dengan gaya geser dasar diberikan sebesar -555.151, dan arah y 0,027 mm diberikan gaya geser sebesar -555.151, pada simpangan inelastic maksimum arah x 0,026 diberikan gaya geser sebesar -555.151, dan arah y 0,026 diberikan gaya geser sebesar -555.151.

5.2 Saran

Karena bangunan berada dilereng yang berbatasan dengan sungai, perlu dianalisis lebih laanjut terhadap stabilitas lereng tersebut. analisis dapat dilakukan dengan acuan dari hasil evaluasi kinerja sruktur atas dan gaya gaya dalam struktur atas yang telah dibuat penulis ini.

DAFTAR PUSTAKA

- Anonim, 2002. SNI 03-1726-2002 Tata Cara Perencanaan Ketahanan Gempa Untuk Bangunan Gedung. Badan Standarisasi Nasional.
- Batara, Ismail. 2021, Contoh Desain Struktur Bangunan Dengan SAP 2000, Mamuju.
- Juwana, Jimmy S. (2005). Panduan Sistem Bangunan Tinggi untuk Arsitek dan Praktisi Bangunan. Jakarta: Erlangga.

Syaifuddin, Zuhri. (2011). Sistim Struktur pada Bangunan Bertingkat. Klaten:

Yayasan Humaniora.

Badan Standarisasi Nasional. 2019. Persyaratan Beton Struktural Untuk Bangunan Gedung (SNI 2847:2019). Jakarta

DOKUMENTASI HOTEL PARAI KOTA

SAWAHLUNTO DARI 4 SISI

