Enhancement of Aqueous Solubility and Dissolution of Celecoxib through Phosphatidylcholine-Based Dispersion Systems Solidified with Adsorbent Carriers

Kanghee, Jo (2019) Enhancement of Aqueous Solubility and Dissolution of Celecoxib through Phosphatidylcholine-Based Dispersion Systems Solidified with Adsorbent Carriers. MDPI, 11 (1). ISSN 1999-4923

[img] Text
pharmaceutics 2019 (1).pdf

Download (180MB)

Abstract

This study aimed to design phosphatidylcholine (PC)-based solid dispersion (SD) systems for enhancing the apparent aqueous solubility and dissolution of celecoxib (CLC), a selective cyclooxygenase-2 inhibitor with a highly hydrophobic property. Although PC-based dispersion formulations considerably increased solubilities of CLC, the lipidic texture of PC was not appropriate as a solid dosage form for oral administration of CLC. To mask the lipidic texture of PC-based matrices, Neusilin® US2, an adsorbent material with a porous structure and large surface area widely used in the pharmaceutical industry, was employed and thereby fully powderized PC-based dispersion formulations could be fabricated. However, PC matrices containing CLC strongly adsorbed to the pores of Neusilin® US2 was not able to be rapidly released. To address this problem, different hydrophilic materials were examined to promote the release of the CLC-dispersed PC matrices from Neusilin® US2. Among tested hydrophilic materials, croscarmellose sodium was the most suitable to facilitate fast drug dissolution from Neusilin® US2 particles, showing significantly enhanced apparent aqueous solubility and dissolution behavior of CLC. Through differential scanning calorimetry, X-ray diffraction, and Fourier transform infrared spectroscopy (FT-IR) analysis, a considerably reduced crystallinity of CLC dispersed in the PC-based dispersion formulations was demonstrated. The PC-based SD formulations developed in this study would be useful for improving the oral bioavailability of poorly soluble drugs such as CLC.

Item Type: Article
Subjects: R Medicine > RS Pharmacy and materia medica
Divisions: Library of Congress Subject Areas > P Language and Literature > Farmasi
Library of Congress Subject Areas > P Language and Literature > Fakultas Farmasi > Farmasi
Fakultas Farmasi > Farmasi
Depositing User: Unnamed user with email repo@umsb.ac.id
Date Deposited: 28 Sep 2022 02:25
Last Modified: 28 Sep 2022 02:25
URI: http://eprints.umsb.ac.id/id/eprint/469

Actions (login required)

View Item View Item